Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stroke ; 55(6): 1629-1640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639087

RESUMEN

BACKGROUND: Cortical excitation/inhibition dynamics have been suggested as a key mechanism occurring after stroke. Their supportive or maladaptive role in the course of recovery is still not completely understood. Here, we used transcranial magnetic stimulation (TMS)-electroencephalography coupling to study cortical reactivity and intracortical GABAergic inhibition, as well as their relationship to residual motor function and recovery longitudinally in patients with stroke. METHODS: Electroencephalography responses evoked by TMS applied to the ipsilesional motor cortex were acquired in patients with stroke with upper limb motor deficit in the acute (1 week), early (3 weeks), and late subacute (3 months) stages. Readouts of cortical reactivity, intracortical inhibition, and complexity of the evoked dynamics were drawn from TMS-evoked potentials induced by single-pulse and paired-pulse TMS (short-interval intracortical inhibition). Residual motor function was quantified through a detailed motor evaluation. RESULTS: From 76 patients enrolled, 66 were included (68.2±13.2 years old, 18 females), with a Fugl-Meyer score of the upper extremity of 46.8±19. The comparison with TMS-evoked potentials of healthy older revealed that most affected patients exhibited larger and simpler brain reactivity patterns (Pcluster<0.05). Bayesian ANCOVA statistical evidence for a link between abnormally high motor cortical excitability and impairment level. A decrease in excitability in the following months was significantly correlated with better motor recovery in the whole cohort and the subgroup of recovering patients. Investigation of the intracortical GABAergic inhibitory system revealed the presence of beneficial disinhibition in the acute stage, followed by a normalization of inhibitory activity. This was supported by significant correlations between motor scores and the contrast of local mean field power and readouts of signal dynamics. CONCLUSIONS: The present results revealed an abnormal motor cortical reactivity in patients with stroke, which was driven by perturbations and longitudinal changes within the intracortical inhibition system. They support the view that disinhibition in the ipsilesional motor cortex during the first-week poststroke is beneficial and promotes neuronal plasticity and recovery.


Asunto(s)
Electroencefalografía , Potenciales Evocados Motores , Corteza Motora , Inhibición Neural , Recuperación de la Función , Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Femenino , Masculino , Estimulación Magnética Transcraneal/métodos , Anciano , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Corteza Motora/fisiopatología , Recuperación de la Función/fisiología , Potenciales Evocados Motores/fisiología , Inhibición Neural/fisiología , Anciano de 80 o más Años
2.
Cereb Cortex ; 32(15): 3187-3205, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34864941

RESUMEN

Discrimination and integration of motion direction requires the interplay of multiple brain areas. Theoretical accounts of perception suggest that stimulus-related (i.e., exogenous) and decision-related (i.e., endogenous) factors affect distributed neuronal processing at different levels of the visual hierarchy. To test these predictions, we measured brain activity of healthy participants during a motion discrimination task, using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). We independently modeled the impact of exogenous factors (task demand) and endogenous factors (perceptual decision-making) on the activity of the motion discrimination network and applied Dynamic Causal Modeling (DCM) to both modalities. DCM for event-related potentials (DCM-ERP) revealed that task demand impacted the reciprocal connections between the primary visual cortex (V1) and medial temporal areas (V5). With practice, higher visual areas were increasingly involved, as revealed by DCM-fMRI. Perceptual decision-making modulated higher levels (e.g., V5-to-Frontal Eye Fields, FEF), in a manner predictive of performance. Our data suggest that lower levels of the visual network support early, feature-based selection of responses, especially when learning strategies have not been implemented. In contrast, perceptual decision-making operates at higher levels of the visual hierarchy by integrating sensory information with the internal state of the subject.


Asunto(s)
Mapeo Encefálico , Percepción de Movimiento , Encéfalo/fisiología , Mapeo Encefálico/métodos , Electroencefalografía , Humanos , Imagen por Resonancia Magnética/métodos , Percepción de Movimiento/fisiología , Estimulación Luminosa
3.
Cereb Cortex ; 30(10): 5204-5217, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32427284

RESUMEN

Two important theories in cognitive neuroscience are predictive coding (PC) and the global workspace (GW) theory. A key research task is to understand how these two theories relate to one another, and particularly, how the brain transitions from a predictive early state to the eventual engagement of a brain-scale state (the GW). To address this question, we present a source-localization of EEG responses evoked by the local-global task-an experimental paradigm that engages a predictive hierarchy, which encompasses the GW. The results of our source reconstruction suggest three phases of processing. The first phase involves the sensory (here auditory) regions of the superior temporal lobe and predicts sensory regularities over a short timeframe (as per the local effect). The third phase is brain-scale, involving inferior frontal, as well as inferior and superior parietal regions, consistent with a global neuronal workspace (GNW; as per the global effect). Crucially, our analysis suggests that there is an intermediate (second) phase, involving modulatory interactions between inferior frontal and superior temporal regions. Furthermore, sedation with propofol reduces modulatory interactions in the second phase. This selective effect is consistent with a PC explanation of sedation, with propofol acting on descending predictions of the precision of prediction errors; thereby constraining access to the GNW.


Asunto(s)
Encéfalo/fisiología , Estado de Conciencia/fisiología , Potenciales Evocados Auditivos/fisiología , Aceleración , Adulto , Comprensión/fisiología , Humanos , Masculino , Lóbulo Parietal/fisiología , Lóbulo Temporal/fisiología , Adulto Joven
4.
Conscious Cogn ; 63: 123-142, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30005277

RESUMEN

While many studies have linked prediction errors and event related potentials at a single processing level, few consider how these responses interact across levels. In response, we present a factorial analysis of a multi-level oddball task - the local-global task - and we explore it when participants are sedated versus recovered. We found that the local and global levels in fact interact. This is of considerable current interest, since it has recently been argued that the MEEG response evoked by the global effect corresponds to a distinct processing mode that moves beyond predictive coding. This interaction suggests that the two processing modes are not distinct. Additionally, we observed that sedation modulates this interaction, suggesting that conscious awareness may not be completely restricted to a single (global) processing level.


Asunto(s)
Estado de Conciencia , Estimulación Acústica , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Sedación Consciente , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Electroencefalografía/efectos de los fármacos , Potenciales Evocados Auditivos/efectos de los fármacos , Potenciales Evocados Auditivos/fisiología , Humanos , Hipnóticos y Sedantes/farmacología , Propofol/farmacología , Teoría Psicológica , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-25570130

RESUMEN

This work investigates phase synchrony as a neuro-marker for the identification of two brain states: coma and quasi-brain-death. Scalp electroencephalography (EEG) data of 34 patients were recorded in an intensive care unit (ICU), with 17 recordings for patients in a coma state, and 17 recordings for patients in a quasi-brain-death state. Phase synchrony was used for feature extraction from EEG recording by comparing the phase value between pairs of electrodes using an entropy based measure. In particular, we performed phase synchrony analysis in five standard frequency bands and provide visualization of the phase synchronies in matrices. The effectiveness of the phase synchrony features in each of the frequency bands are evaluated with statistical analysis. Results suggest phase synchrony for coma patients has a significant increase in the theta / alpha band compared to quasi-brain-death patients. Hence, we propose phase synchrony as a candidate for the identification of consciousness states between coma and quasi-brain-death.


Asunto(s)
Encéfalo/fisiopatología , Electroencefalografía/métodos , Red Nerviosa/fisiopatología , Inconsciencia/fisiopatología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Muerte Encefálica/fisiopatología , Coma/fisiopatología , Electrodos , Sincronización de Fase en Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
6.
Epilepsia ; 53(9): 1669-76, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22738131

RESUMEN

From the very beginning the seizure prediction community faced problems concerning evaluation, standardization, and reproducibility of its studies. One of the main reasons for these shortcomings was the lack of access to high-quality long-term electroencephalography (EEG) data. In this article we present the EPILEPSIAE database, which was made publicly available in 2012. We illustrate its content and scope. The EPILEPSIAE database provides long-term EEG recordings of 275 patients as well as extensive metadata and standardized annotation of the data sets. It will adhere to the current standards in the field of prediction and facilitate reproducibility and comparison of those studies. Beyond seizure prediction, it may also be of considerable benefit for studies focusing on seizure detection, basic neurophysiology, and other fields.


Asunto(s)
Bases de Datos Factuales , Electroencefalografía , Epilepsia/epidemiología , Epilepsia/fisiopatología , Adolescente , Adulto , Anciano , Niño , Preescolar , Epilepsia/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
7.
Comput Methods Programs Biomed ; 106(3): 127-38, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20863589

RESUMEN

With a worldwide prevalence of about 1%, epilepsy is one of the most common serious brain diseases with profound physical, psychological and, social consequences. Characteristic symptoms are seizures caused by abnormally synchronized neuronal activity that can lead to temporary impairments of motor functions, perception, speech, memory or, consciousness. The possibility to predict the occurrence of epileptic seizures by monitoring the electroencephalographic activity (EEG) is considered one of the most promising options to establish new therapeutic strategies for the considerable fraction of patients with currently insufficiently controlled seizures. Here, a database is presented which is part of an EU-funded project "EPILEPSIAE" aiming at the development of seizure prediction algorithms which can monitor the EEG for seizure precursors. High-quality, long-term continuous EEG data, enriched with clinical metadata, which so far have not been available, are managed in this database as a joint effort of epilepsy centers in Portugal (Coimbra), France (Paris) and Germany (Freiburg). The architecture and the underlying schema are here reported for this database. It was designed for an efficient organization, access and search of the data of 300 epilepsy patients, including high quality long-term EEG recordings, obtained with scalp and intracranial electrodes, as well as derived features and supplementary clinical and imaging data. The organization of this European database will allow for accessibility by a wide spectrum of research groups and may serve as a model for similar databases planned for the future.


Asunto(s)
Bases de Datos Factuales , Epilepsia , Algoritmos , Electroencefalografía , Epilepsia/etiología , Epilepsia/fisiopatología , Epilepsia/cirugía , Europa (Continente) , Predicción , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...