Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37420936

RESUMEN

The accuracy of radio-based positioning is heavily influenced by a dense multipath (DM) channel, leading to poor position accuracy. The DM affects both time of flight (ToF) measurements extracted from wideband (WB) signals-specifically, if the bandwidth is below 100 MHz-as well as received signal strength (RSS) measurements, due to the interference of multipath signal components onto the information-bearing line-of-sight (LoS) component. This work proposes an approach for combining these two different measurement technologies, leading to a robust position estimation in the presence of DM. We assume that a large ensemble of densely-spaced devices is to be positioned. We use RSS measurements to determine "clusters" of devices in the vicinity of each other. Joint processing of the WB measurements from all devices in a cluster efficiently suppresses the influence of the DM. We formulate an algorithmic approach for the information fusion of the two technologies and derive the corresponding Cramér-Rao lower bound (CRLB) to gain insight into the performance trade-offs at hand. We evaluate our results by simulations and validate the approach with real-world measurement data. The results show that the clustering approach can halve the root-mean-square error (RMSE) from about 2 m to below 1 m, using WB signal transmissions in the 2.4 GHz ISM band at a bandwidth of about 80 MHz.


Asunto(s)
Tecnología , Extremidad Superior , Análisis por Conglomerados
2.
Sensors (Basel) ; 22(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35062424

RESUMEN

Ultra-Wide Bandwidth (UWB) and mm-wave radio systems can resolve specular multipath components (SMCs) from estimated channel impulse response measurements. A geometric model can describe the delays, angles-of-arrival, and angles-of-departure of these SMCs, allowing for a prediction of these channel features. For the modeling of the amplitudes of the SMCs, a data-driven approach has been proposed recently, using Gaussian Process Regression (GPR) to map and predict the SMC amplitudes. In this paper, the applicability of the proposed multipath-resolved, GPR-based channel model is analyzed by studying features of the propagation channel from a set of channel measurements. The features analyzed include the energy capture of the modeled SMCs, the number of resolvable SMCs, and the ranging information that could be extracted from the SMCs. The second contribution of the paper concerns the potential applicability of the channel model for a multipath-resolved, single-anchor positioning system. The predicted channel knowledge is used to evaluate the measurement likelihood function at candidate positions throughout the environment. It is shown that the environmental awareness created by the multipath-resolved, GPR-based channel model yields higher robustness against position estimation outliers.

3.
Sensors (Basel) ; 18(12)2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513978

RESUMEN

The accuracy of radio-based positioning systems will be limited by multipath interference in realistic application scenarios. This paper derives closed-form expressions for the Cramér⁻Rao lower bound (CRLB) on the achievable time-of-arrival (ToA) and angle-of-arrival (AoA) estimation-error variances, considering the presence of multipath radio channels, and extends these results to position estimation. The derivations are based on channel models comprising deterministic, specular multipath components as well as stochastic, diffuse/dense multipath. The derived CRLBs thus allow an evaluation of the influence of channel parameters, the geometric configuration of the environment, and system parameters such as signal bandwidth and array geometry. Our results quantify how the ToA and AoA accuracies decrease when the signal bandwidth is reduced, because more multipath will then interfere with the useful LoS component. Antenna arrays can (partly) compensate this performance loss, exploiting diversity among the multipath interference. For example, the AoA accuracy with a 16-element linear array at 1 MHz bandwidth is similar to a two-element array at 1 GHz , in the magnitude order of one degree. The ToA accuracy, on the other hand, still scales by a factor of 100 from the cm-regime to the m-regime because of the dominating influence of the signal bandwidth. The position error bound shows the relationship between the range and angle information under realistic indoor channel conditions and their different scaling behaviors as a function of the anchor⁻agent placement. Specular multipath components have a maximum detrimental influence near the walls. It is shown for an L-shaped room that a fairly even distribution of the position error bound can be achieved throughout the environment, using two anchors equipped with 2 × 2 -array antennas. The accuracy limit due to multipath increases from the 1⁻10-cm-range at 1 GHz bandwidth to the 0.5⁻1-m-range at 100 MHz .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...