Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Funct Morphol Kinesiol ; 8(4)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37873902

RESUMEN

Current metrics like baseline heart rate (HR) and HR recovery fail in predicting overtraining (OT), a syndrome manifesting from a deteriorating autonomic nervous system (ANS). Preventing OT requires tracking the influence of internal physiological loads induced by exercise training programs on the ANS. Therefore, this study evaluated the predictability of a novel, exercise cardiac load metric on the deterioration of the ANS. Twenty male American football players, with an average age of 21.3 years and body mass indices ranging from 23.7 to 39.2 kg/m2 were included in this study. Subjects participated in 40 strength- and power-focused exercise sessions over 8 weeks and wore armband monitors (Warfighter Monitor, Tiger Tech Solutions) equipped with electrocardiography capabilities. Exercise cardiac load was the product of average training HR and duration. Baseline HR, HR variability (HRV), average HR, and peak HR were also measured. HR recovery was measured on the following day. HRV indices assessed included the standard deviation of NN intervals (SDNN) and root mean square of successive RR interval differences (rMSSD) Linear regression models assessed the relationships between each cardiac metric and HR recovery, with statistical significance set at α < 0.05. Subjects were predominantly non-Hispanic black (70%) and aged 21.3 (±1.4) years. Adjusted models showed that exercise cardiac load elicited the strongest negative association with HR recovery for previous day (ß = -0.18 ± 0.03; p < 0.0000), one-week (ß = -0.20 ± 0.03; p < 0.0000) and two-week (ß = -0.26 ± 0.03; p < 0.0000) training periods compared to average HR (ßetas: -0.09 to -0.02; p < 0.0000) and peak HR (ßetas: -0.13 to -0.23; p < 0.0000). Statistically significant relationships were also found for baseline HR (p < 0.0000), SDNN (p < 0.0000) and rMSSD (p < 0.0000). Exercise cardiac load appears to best predict ANS deterioration across one- to two-week training periods, showing a capability for tracking an athlete's physiological tolerance and ANS response. Importantly, this information may increase the effectiveness of exercise training programs, enhance performance, and prevent OT.

2.
J Funct Morphol Kinesiol ; 8(3)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37754967

RESUMEN

Fully restoring autonomic nervous system (ANS) function is paramount for peak sports performance. Training programs failing to provide sufficient recovery, especially during the in-season, may negatively affect performance. This study aimed to evaluate the influence of the physiological workload of collegiate football training on ANS recovery and function during the in-season. Football athletes recruited from a D1 college in the southeastern US were prospectively followed during their 13-week "in-season". Athletes wore armband monitors equipped with ECG and inertial movement capabilities that measured exercise cardiac load (ECL; total heartbeats) and maximum running speed during and baseline heart rate (HR), HR variability (HRV) 24 h post-training. These metrics represented physiological load (ECL = HR·Duration), ANS function, and recovery, respectively. Linear regression models evaluated the associations between ECL, baseline HR, HRV, and maximum running speed. Athletes (n = 30) were 20.2 ± 1.5 years, mostly non-Hispanic Black (80.0%). Negative associations were observed between acute and cumulative exposures of ECLs and running speed (ß = -0.11 ± 0.00, p < 0.0000 and ß = -0.15 ± 0.04, p < 0.0000, respectively). Similarly, negative associations were found between baseline HR and running speed (ß = -0.45 ± 0.12, 95% CI: -0.70, -0.19; p = 0.001). HRV metrics were positively associated with running speed: (SDNN: ß = 0.32 ± 0.09, p < 0.03 and rMSSD: ß = 0.35 ± 0.11, p < 0.02). Our study demonstrated that exposure to high ECLs, both acutely and cumulatively, may negatively influence maximum running speed, which may manifest in a deteriorating ANS. Further research should continue identifying optimal training: recovery ratios during off-, pre-, and in-season phases.

3.
Heliyon ; 9(7): e18125, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539237

RESUMEN

The autonomic nervous system (ANS) is profoundly affected by high intensity exercise. However, evidence is less clear on ANS recovery and function following prolonged bouts of high intensity exercise, especially in non-endurance athletes. Therefore, this study aimed to investigate the relationships between duration and intensity of acute exercise training sessions and ANS recovery and function in Division I football athletes. Fifty, male football athletes were included in this study. Subjects participated in 135 days of exercise training sessions throughout the 25-week season and wore armband monitors (Warfighter Monitor, Tiger Tech Solutions) equipped with electrocardiography capabilities. Intensity was measured via heart rate (HR) during an 'active state', defined as HR ≥ 85 bpm. Further, data-driven intensity thresholds were used and included HR < 140 bpm, HR < 150 bpm, HR < 160 bpm, HR ≥ 140 bpm, HR ≥ 150 bpm and HR ≥ 160 bpm. Baseline HR and HR recovery were measured and represented ANS recovery and function 24h post-exercise. Linear regression models assessed the relationships between time spent at the identified intensity thresholds and ANS recovery and function 24h post-exercise. Statistical significance set at α < 0.05. Athletes participated in 128 training sessions, totaling 2735 data points analyzed. Subjects were predominantly non-Hispanic black (66.0%), aged 21.2 (±1.5) years and average body mass index of 29.2 (4.7) kg⋅(m2)-1. For baseline HR, statistically significant associations between duration and next-day ANS recovery were observed at HR < 140 bpm (ß = -0.08 ± 0.02, R2 = 0.31, p < 0.001), HR above 150 and 160 bpm intensity thresholds (ß = 0.25 ± 0.02, R2 = 0.69, p < 0.0000 and ß = 0.59 ± 0.06, R2 = 0.71, p < 0.0000). Similar associations were observed for HR recovery: HR < 140 bpm (ß = 0.15 ± 0.03, R2 = 0.43, p < 0.0000) and HR above 150 and 160 bpm (ß = -0.33 ± 0.03, R2 = 0.73, p < 0.0000 and ß = -0.80 ± 0.06, R2 = 0.71, p < 0.0000). The strengths of these associations increased with increasing intensity, HR ≥ 150 and 160 bpm (baseline HR: ß range = 0.25 vs 0.59, R2: 0.69 vs 0.71 and HR recovery: ß range = -0.33 vs -0.80, R2 = 0.73 vs 0.77). Time spent in lower intensity thresholds, elicited weaker associations with ANS recovery and function 24h post-exercise, with statistical significance observed only at HR < 140 bpm (ß = -0.08 ± 0.02, R2 = 0.31, p < 0.001). The findings of this study showed that ANS recovery and function following prolonged high intensity exercise remains impaired for more than 24h. Strength and conditioning coaches should consider shorter bouts of strenuous exercise and extending recovery periods within and between exercise training sessions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...