Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chaos ; 34(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271632

RESUMEN

A reliable supply with electric power is vital for our society. Transmission line failures are among the biggest threats for power grid stability as they may lead to a splitting of the grid into mutual asynchronous fragments. New conceptual methods are needed to assess system stability that complement existing simulation models. In this article, we propose a combination of network science metrics and machine learning models to predict the risk of desynchronization events. Network science provides metrics for essential properties of transmission lines such as their redundancy or centrality. Machine learning models perform inherent feature selection and, thus, reveal key factors that determine network robustness and vulnerability. As a case study, we train and test such models on simulated data from several synthetic test grids. We find that the integrated models are capable of predicting desynchronization events after line failures with an average precision greater than 0.996 when averaging over all datasets. Learning transfer between different datasets is generally possible, at a slight loss of prediction performance. Our results suggest that power grid desynchronization is essentially governed by only a few network metrics that quantify the networks' ability to reroute the flow without creating exceedingly high static line loadings.

2.
Phys Rev E ; 108(4-1): 044302, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978596

RESUMEN

Urban transport systems are gaining in importance, as an increasing share of the global population lives in cities and mobility-based carbon emissions must be reduced to mitigate climate change and improve air quality and citizens' health. As a result, public transport systems are prone to congestion, raising the question of how to optimize them to cope with this challenge. In this paper, we analyze the optimal design of urban transport networks to minimize the average travel time in monocentric as well as in polycentric cities. We suggest an elementary model for congestion and introduce a numerical method to determine the optimal shape among a set of predefined geometries considering different models for the behavior of individual travelers. We map out the optimal shape of fundamental network geometries with a focus on the impact of congestion.

3.
Nat Commun ; 13(1): 7479, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463284

RESUMEN

Both human-made and natural supply systems, such as power grids and leaf venation networks, are built to operate reliably under changing external conditions. Many of these spatial networks exhibit community structures. Here, we show that a relatively strong connectivity between the parts of a network can be used to define a different class of communities: dual communities. We demonstrate that traditional and dual communities emerge naturally as two different phases of optimized network structures that are shaped by fluctuations and that they both suppress failure spreading, which underlines their importance in understanding the shape of real-world supply networks.


Asunto(s)
Sistemas de Computación , Hojas de la Planta , Humanos
4.
Nat Commun ; 13(1): 5396, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104335

RESUMEN

The ongoing energy transition requires power grid extensions to connect renewable generators to consumers and to transfer power among distant areas. The process of grid extension requires a large investment of resources and is supposed to make grid operation more robust. Yet, counter-intuitively, increasing the capacity of existing lines or adding new lines may also reduce the overall system performance and even promote blackouts due to Braess' paradox. Braess' paradox was theoretically modeled but not yet proven in realistically scaled power grids. Here, we present an experimental setup demonstrating Braess' paradox in an AC power grid and show how it constrains ongoing large-scale grid extension projects. We present a topological theory that reveals the key mechanism and predicts Braessian grid extensions from the network structure. These results offer a theoretical method to understand and practical guidelines in support of preventing unsuitable infrastructures and the systemic planning of grid extensions.

5.
Chaos ; 32(5): 053117, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35649969

RESUMEN

Dynamic stability is imperative for the operation of the electric power system. This article provides analytical results and effective stability criteria focusing on the interplay of network structures and the local dynamics of synchronous machines. The results are based on an extensive linear stability analysis of the third-order model for synchronous machines, comprising the classical power-swing equations and the voltage dynamics. The article addresses the impact of Ohmic losses, which are important in distribution and microgrids but often neglected in analytical studies. We compute the shift of the stability boundaries to leading order, and thus provide a detailed qualitative picture of the impact of Ohmic losses. A subsequent numerical study of the criteria is presented, without and with resistive terms, to test how tight the derived analytical results are.

6.
Patterns (N Y) ; 2(11): 100365, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34820648

RESUMEN

Stable operation of an electric power system requires strict operational limits for the grid frequency. Fluctuations and external impacts can cause large frequency deviations and increased control efforts. Although these complex interdependencies can be modeled using machine learning algorithms, the black box character of many models limits insights and applicability. In this article, we introduce an explainable machine learning model that accurately predicts frequency stability indicators for three European synchronous areas. Using Shapley additive explanations, we identify key features and risk factors for frequency stability. We show how load and generation ramps determine frequency gradients, and we identify three classes of generation technologies with converse impacts. Control efforts vary strongly depending on the grid and time of day and are driven by ramps as well as electricity prices. Notably, renewable power generation is central only in the British grid, while forecasting errors play a major role in the Nordic grid.

7.
Nat Commun ; 12(1): 3143, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035263

RESUMEN

In our daily lives, we rely on the proper functioning of supply networks, from power grids to water transmission systems. A single failure in these critical infrastructures can lead to a complete collapse through a cascading failure mechanism. Counteracting strategies are thus heavily sought after. In this article, we introduce a general framework to analyse the spreading of failures in complex networks and demostrate that not only decreasing but also increasing the connectivity of the network can be an effective method to contain damages. We rigorously prove the existence of certain subgraphs, called network isolators, that can completely inhibit any failure spreading, and we show how to create such isolators in synthetic and real-world networks. The addition of selected links can thus prevent large scale outages as demonstrated for power transmission grids.

8.
Entropy (Basel) ; 23(5)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923154

RESUMEN

With the aim of improving the reconstruction of stochastic evolution equations from empirical time-series data, we derive a full representation of the generator of the Kramers-Moyal operator via a power-series expansion of the exponential operator. This expansion is necessary for deriving the different terms in a stochastic differential equation. With the full representation of this operator, we are able to separate finite-time corrections of the power-series expansion of arbitrary order into terms with and without derivatives of the Kramers-Moyal coefficients. We arrive at a closed-form solution expressed through conditional moments, which can be extracted directly from time-series data with a finite sampling intervals. We provide all finite-time correction terms for parametric and non-parametric estimation of the Kramers-Moyal coefficients for discontinuous processes which can be easily implemented-employing Bell polynomials-in time-series analyses of stochastic processes. With exemplary cases of insufficiently sampled diffusion and jump-diffusion processes, we demonstrate the advantages of our arbitrary-order finite-time corrections and their impact in distinguishing diffusion and jump-diffusion processes strictly from time-series data.

9.
Nat Commun ; 11(1): 6362, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311505

RESUMEN

The electrical energy system has attracted much attention from an increasingly diverse research community. Many theoretical predictions have been made, from scaling laws of fluctuations to propagation velocities of disturbances. However, to validate any theory, empirical data from large-scale power systems are necessary but are rarely shared openly. Here, we analyse an open database of measurements of electric power grid frequencies across 17 locations in 12 synchronous areas on three continents. The power grid frequency is of particular interest, as it indicates the balance of supply and demand and carries information on deterministic, stochastic, and control influences. We perform a broad analysis of the recorded data, compare different synchronous areas and validate a previously conjectured scaling law. Furthermore, we show how fluctuations change from local independent oscillations to a homogeneous bulk behaviour. Overall, the presented open database and analyses constitute a step towards more shared, collaborative energy research.

10.
Phys Rev Lett ; 125(21): 218301, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33274998

RESUMEN

Spreading phenomena essentially underlie the dynamics of various natural and technological networked systems, yet how spatiotemporal propagation patterns emerge from such networks remains largely unknown. Here we propose a novel approach that reveals universal features determining the spreading dynamics in diffusively coupled networks and disentangles them from factors that are system specific. In particular, we first analytically identify a purely topological factor encoding the interaction structure and strength, and second, numerically estimate a master function characterizing the universal scaling of the perturbation arrival times across topologically different networks. The proposed approach thereby provides intuitive insights into complex propagation patterns as well as accurate predictions for the perturbation arrival times. The approach readily generalizes to a wide range of networked systems with diffusive couplings and may contribute to assess the risks of transient influences of ubiquitous perturbations in real-world systems.

11.
Nat Commun ; 11(1): 5796, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199688

RESUMEN

The structure and design of optimal supply networks is an important topic in complex networks research. A fundamental trait of natural and man-made networks is the emergence of loops and the trade-off governing their formation: adding redundant edges to supply networks is costly, yet beneficial for resilience. Loops typically form when costs for new edges are small or inputs uncertain. Here, we shed further light on the transition to loop formation. We demonstrate that loops emerge discontinuously when decreasing the costs for new edges for both an edge-damage model and a fluctuating sink model. Mathematically, new loops are shown to form through a saddle-node bifurcation. Our analysis allows to heuristically predict the location and cost where the first loop emerges. Finally, we unveil an intimate relationship among betweenness measures and optimal tree networks. Our results can be used to understand the evolution of loop formation in real-world biological networks.

12.
Sci Rep ; 9(1): 19971, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882778

RESUMEN

Mitigating climate change demands a transition towards renewable electricity generation, with wind power being a particularly promising technology. Long periods either of high or of low wind therefore essentially define the necessary amount of storage to balance the power system. While the general statistics of wind velocities have been studied extensively, persistence (waiting) time statistics of wind is far from well understood. Here, we investigate the statistics of both high- and low-wind persistence. We find heavy tails and explain them as a superposition of different wind conditions, requiring q-exponential distributions instead of exponential distributions. Persistent wind conditions are not necessarily caused by stationary atmospheric circulation patterns nor by recurring individual weather types but may emerge as a combination of multiple weather types and circulation patterns. This also leads to Fréchet instead of Gumbel extreme value statistics. Understanding wind persistence statistically and synoptically may help to ensure a reliable and economically feasible future energy system, which uses a high share of wind generation.

13.
PLoS One ; 14(11): e0225346, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31747436

RESUMEN

Quantifying the importance and power of individual nodes depending on their position in socio-economic networks constitutes a problem across a variety of applications. Examples include the reach of individuals in (online) social networks, the importance of individual banks or loans in financial networks, the relevance of individual companies in supply networks, and the role of traffic hubs in transport networks. Which features characterize the importance of a node in a trade network during the emergence of a globalized, connected market? Here we analyze a model that maps the evolution of global connectivity in a supply network to a percolation problem. In particular, we focus on the influence of topological features of the node within the underlying transport network. Our results reveal that an advantageous position with respect to different length scales determines the competitiveness of a node at different stages of the percolation process and depending on the speed of the cluster growth.


Asunto(s)
Internacionalidad , Mercadotecnía/economía , Modelos Económicos , Red Social , Transportes/economía
14.
Sci Adv ; 5(7): eaav1027, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31392264

RESUMEN

Across physics, biology, and engineering, the collective dynamics of oscillatory networks often evolve into self-organized operating states. How such networks respond to external fluctuating signals fundamentally underlies their function, yet is not well understood. Here, we present a theory of dynamic network response patterns and reveal how distributed resonance patterns emerge in oscillatory networks once the dynamics of the oscillatory units become more than one-dimensional. The network resonances are topology specific and emerge at an intermediate frequency content of the input signals, between global yet homogeneous responses at low frequencies and localized responses at high frequencies. Our analysis reveals why these patterns arise and where in the network they are most prominent. These results may thus provide general theoretical insights into how fluctuating signals induce response patterns in networked systems and simultaneously help to develop practical guiding principles for real-world network design and control.

15.
Chaos ; 29(12): 123119, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31893663

RESUMEN

Networks of phase oscillators are studied in various contexts, in particular, in the modeling of the electric power grid. A functional grid corresponds to a stable steady state such that any bifurcation can have catastrophic consequences up to a blackout. Also, the existence of multiple steady states is undesirable as it can lead to transitions or circulatory flows. Despite the high practical importance there is still no general theory of the existence and uniqueness of steady states in such systems. Analytic results are mostly limited to grids without Ohmic losses. In this article, we introduce a method to systematically construct the solutions of the real power load-flow equations in the presence of Ohmic losses and explicitly compute them for tree and ring networks. We investigate different mechanisms leading to multistability and discuss the impact of Ohmic losses on the existence of solutions.

16.
Nat Commun ; 9(1): 4032, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262894

RESUMEN

The original version of this Article omitted the following from the Acknowledgements: 'Finally, we gratefully acknowledge support from the German Science Foundation (DFG) by a grant toward the Cluster of Excellence "Center for Advancing Electronics Dresden" (cfaed)'. This has been corrected in both the PDF and HTML versions of the Article.

17.
Phys Rev E ; 98(1-1): 012305, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30110818

RESUMEN

We develop methods to efficiently reconstruct the topology and line parameters of a power grid from the measurement of nodal variables. We propose two compressed sensing algorithms that minimize the amount of necessary measurement resources by exploiting network sparsity, symmetry of connections, and potential prior knowledge about the connectivity. The algorithms are reciprocal to established state estimation methods, where nodal variables are estimated from few measurements given the network structure. Hence, they enable an advanced grid monitoring where both state and structure of a grid are subject to uncertainties or missing information.

18.
PLoS One ; 13(8): e0201457, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30133464

RESUMEN

The high temporal variability of wind power generation represents a major challenge for the realization of a sustainable energy supply. Large backup and storage facilities are necessary to secure the supply in periods of low renewable generation, especially in countries with a high share of renewables. We show that strong climate change is likely to impede the system integration of intermittent wind energy. To this end, we analyze the temporal characteristics of wind power generation based on high-resolution climate projections for Europe and uncover a robust increase of backup energy and storage needs in most of Central, Northern and North-Western Europe. This effect can be traced back to an increase of the likelihood for long periods of low wind generation and an increase in the seasonal wind variability.


Asunto(s)
Cambio Climático , Predicción , Centrales Eléctricas/tendencias , Viento , Europa (Continente) , Centrales Eléctricas/organización & administración
19.
Phys Rev Lett ; 120(24): 248302, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29957012

RESUMEN

The emergence of large-scale connectivity underlies the proper functioning of many networked systems, ranging from social networks and technological infrastructure to global trade networks. Percolation theory characterizes network formation following stochastic local rules, while optimization models of network formation assume a single controlling authority or one global objective function. In socioeconomic networks, however, network formation is often driven by individual, locally optimal decisions. How such decisions impact connectivity is only poorly understood to date. Here, we study how large-scale connectivity emerges from decisions made by rational agents that individually minimize costs for satisfying their demand. We establish that the solution of the resulting nonlinear optimization model is exactly given by the final state of a local percolation process. This allows us to systematically analyze how locally optimal decisions on the microlevel define the structure of networks on the macroscopic scale.

20.
Nat Commun ; 9(1): 1975, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773793

RESUMEN

Reliable functioning of infrastructure networks is essential for our modern society. Cascading failures are the cause of most large-scale network outages. Although cascading failures often exhibit dynamical transients, the modeling of cascades has so far mainly focused on the analysis of sequences of steady states. In this article, we focus on electrical transmission networks and introduce a framework that takes into account both the event-based nature of cascades and the essentials of the network dynamics. We find that transients of the order of seconds in the flows of a power grid play a crucial role in the emergence of collective behaviors. We finally propose a forecasting method to identify critical lines and components in advance or during operation. Overall, our work highlights the relevance of dynamically induced failures on the synchronization dynamics of national power grids of different European countries and provides methods to predict and model cascading failures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...