Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659876

RESUMEN

Phenotypic evolution is shaped by interactions between organisms and their environments. The environment influences how an organism's genotype determines its phenotype and how this phenotype affects its fitness. To better understand this dual role of the environment in the production and selection of phenotypic variation, we empirically determined and compared the genotype-phenotype-fitness relationship for mutant strains of the budding yeast Saccharomyces cerevisiae in four environments. Specifically, we measured how mutations in the promoter of the metabolic gene TDH3 modified its expression level and affected its growth on media with four different carbon sources. In each environment, we observed a clear relationship between TDH3 expression level and fitness, but this relationship differed among environments. Genetic variants with similar effects on TDH3 expression in different environments often had different effects on fitness and vice versa. Such environment-specific relationships between phenotype and fitness can shape the evolution of phenotypic plasticity. The set of mutants we examined also allowed us to compare the effects of mutations disrupting binding sites for key transcriptional regulators and the TATA box, which is part of the core promoter sequence. Mutations disrupting the binding sites for the transcription factors had more variable effects on expression among environments than mutations disrupting the TATA box, yet mutations with the most environmentally variable effects on fitness were located in the TATA box. This observation suggests that mutations affecting different molecular mechanisms are likely to contribute unequally to regulatory sequence evolution in changing environments.

2.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659873

RESUMEN

In Lepidoptera (butterflies and moths), the genomic region around the gene cortex is a 'hotspot' locus, repeatedly used to generate intraspecific melanic wing color polymorphisms across 100-million-years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. Here, we show that none of the four candidate protein-coding genes within this locus, including cortex, serve as major effectors. Instead, a micro-RNA (miRNA), mir-193, serves as the major effector across three deeply diverged lineages of butterflies, and its function is conserved in Drosophila. In Lepidoptera, mir-193 is derived from a gigantic long non-coding RNA, ivory, and it functions by directly repressing multiple pigmentation genes. We show that a miRNA can drive repeated instances of adaptive evolution in animals.

3.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645200

RESUMEN

Pioneer factors are critical for gene regulation and development because they bind chromatin and make DNA more accessible for binding by other transcription factors. The pioneer factor Grainy head (Grh) is present across metazoans and has been shown to retain a role in epithelium development in fruit flies, nematodes, and mice despite extensive divergence in both amino acid sequence and length. Here, we investigate the evolution of Grh function by comparing the effects of the fly (Drosophila melanogaster) and worm (Caenorhabditis elegans) Grh orthologs on chromatin accessibility, gene expression, embryonic development, and viability in transgenic D. melanogaster. We found that the Caenorhabditis elegans ortholog rescued cuticle development but not full embryonic viability in Drosophila melanogaster grh null mutants. At the molecular level, the C. elegans ortholog only partially rescued chromatin accessibility and gene expression. Divergence in the disordered N-terminus of the Grh protein contributes to these differences in embryonic viability and molecular phenotypes. These data show how pioneer factors can diverge in sequence and function at the molecular level while retaining conserved developmental functions at the organismal level.

4.
PLoS Genet ; 19(12): e1011078, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38091349

RESUMEN

Genetic networks are surprisingly robust to perturbations caused by new mutations. This robustness is conferred in part by compensation for loss of a gene's activity by genes with overlapping functions, such as paralogs. Compensation occurs passively when the normal activity of one paralog can compensate for the loss of the other, or actively when a change in one paralog's expression, localization, or activity is required to compensate for loss of the other. The mechanisms of active compensation remain poorly understood in most cases. Here we investigate active compensation for the loss or reduction in expression of the Saccharomyces cerevisiae gene TDH3 by its paralog TDH2. TDH2 is upregulated in a dose-dependent manner in response to reductions in TDH3 by a mechanism requiring the shared transcriptional regulators Gcr1p and Rap1p. TDH1, a second and more distantly related paralog of TDH3, has diverged in its regulation and is upregulated by another mechanism. Other glycolytic genes regulated by Rap1p and Gcr1p show changes in expression similar to TDH2, suggesting that the active compensation by TDH3 paralogs is part of a broader homeostatic response mediated by shared transcriptional regulators.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell Syst ; 14(4): 247-251, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37080160

RESUMEN

What new questions can we ask about transcriptional regulation given recent developments in large-scale approaches?


Asunto(s)
Regulación de la Expresión Génica , Regulación de la Expresión Génica/genética
7.
Philos Trans R Soc Lond B Biol Sci ; 378(1877): 20220057, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37004723

RESUMEN

Heritable variation in gene expression is common within and among species and contributes to phenotypic diversity. Mutations affecting either cis- or trans-regulatory sequences controlling gene expression give rise to variation in gene expression, and natural selection acting on this variation causes some regulatory variants to persist in a population for longer than others. To understand how mutation and selection interact to produce the patterns of regulatory variation we see within and among species, my colleagues and I have been systematically determining the effects of new mutations on expression of the TDH3 gene in Saccharomyces cerevisiae and comparing them to the effects of polymorphisms segregating within this species. We have also investigated the molecular mechanisms by which regulatory variants act. Over the past decade, this work has revealed properties of cis- and trans-regulatory mutations including their relative frequency, effects, dominance, pleiotropy and fitness consequences. Comparing these mutational effects to the effects of polymorphisms in natural populations, we have inferred selection acting on expression level, expression noise and phenotypic plasticity. Here, I summarize this body of work and synthesize its findings to make inferences not readily discernible from the individual studies alone. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutación , Selección Genética , Polimorfismo Genético
8.
bioRxiv ; 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36711763

RESUMEN

Genetic networks are surprisingly robust to perturbations caused by new mutations. This robustness is conferred in part by compensation for loss of a gene's activity by genes with overlapping functions, such as paralogs. Compensation occurs passively when the normal activity of one paralog can compensate for the loss of the other, or actively when a change in one paralog's expression, localization, or activity is required to compensate for loss of the other. The mechanisms of active compensation remain poorly understood in most cases. Here we investigate active compensation for the loss or reduction in expression of the Saccharomyces cerevisiae gene TDH3 by its paralogs TDH1 and TDH2. TDH1 and TDH2 are upregulated in a dose-dependent manner in response to reductions in TDH3 by a mechanism requiring the shared transcriptional regulators Gcr1p and Rap1p. Other glycolytic genes regulated by Rap1p and Gcr1p show changes in expression similar to TDH2, suggesting that the active compensation by TDH3 paralogs is part of a broader homeostatic response mediated by shared transcriptional regulators.

9.
Mol Biol Evol ; 39(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36508350

RESUMEN

A mutation's degree of pleiotropy (i.e., the number of traits it alters) is predicted to impact the probability of the mutation being detrimental to fitness. For mutations that impact gene expression, mutations acting in cis have been hypothesized to generally be less pleiotropic than mutations affecting the same gene's expression in trans, suggesting that cis-regulatory mutations should be less deleterious and more likely to fix over evolutionary time. Here, we use expression and fitness data from Saccharomyces cerevisiae gene deletion strains to test these hypotheses. By treating deletion of each gene as a cis-regulatory mutation affecting its own expression and deletions of other genes affecting expression of this focal gene as trans-regulatory mutations, we find that cis-acting mutations do indeed tend to be less pleiotropic than trans-acting mutations affecting expression of the same gene. This pattern was observed for the vast majority of genes in the data set and could be explained by the topology of the regulatory network controlling gene expression. Comparing the fitness of cis- and trans-acting mutations affecting expression of the same gene also confirmed that trans-acting deletions tend to be more deleterious. These findings provide strong support for pleiotropy playing a role in the preferential fixation of cis-regulatory alleles over evolutionary time.


Asunto(s)
Evolución Molecular , Proteínas de Saccharomyces cerevisiae , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fenotipo
10.
BMC Genomics ; 23(1): 854, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575386

RESUMEN

Phenotypic evolution is often caused by variation in gene expression resulting from altered gene regulatory mechanisms. Genetic variation affecting chromatin remodeling has been identified as a potential source of variable gene expression; however, the roles of specific chromatin remodeling factors remain unclear. Here, we address this knowledge gap by examining the relationship between variation in gene expression, variation in chromatin structure, and variation in binding of the pioneer factor Grainy head between imaginal wing discs of two divergent strains of Drosophila melanogaster and their F1 hybrid. We find that (1) variation in Grainy head binding is mostly due to sequence changes that act in cis but are located outside of the canonical Grainy head binding motif, (2) variation in Grainy head binding correlates with changes in chromatin accessibility, and (3) this variation in chromatin accessibility, coupled with variation in Grainy head binding, correlates with variation in gene expression in some cases but not others. Interactions among these three molecular layers is complex, but these results suggest that genetic variation affecting the binding of pioneer factors contributes to variation in chromatin remodeling and the evolution of gene expression.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cromatina/genética , Cromatina/metabolismo , Expresión Génica
11.
Curr Opin Genet Dev ; 77: 101998, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36220001

RESUMEN

Studies of regulatory variation in yeast - at the level of new mutations, polymorphisms within a species, and divergence between species - have provided great insight into the molecular and evolutionary processes responsible for the evolution of gene expression in eukaryotes. The increasing ease with which yeast genomes can be manipulated and expression quantified in a high-throughput manner has recently accelerated mechanistic studies of cis- and trans-regulatory variation at multiple evolutionary timescales. These studies have, for example, identified differences in the properties of cis- and trans-acting mutations that affect their evolutionary fate, experimentally characterized the molecular mechanisms through which cis- and trans-regulatory variants act, and illustrated how regulatory networks can diverge between species with or without changes in gene expression.


Asunto(s)
Evolución Molecular , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Genoma
12.
Science ; 377(6601): 105-109, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35771906

RESUMEN

Variation in gene expression arises from cis- and trans-regulatory mutations, which contribute differentially to expression divergence. We compare the impacts on gene expression and fitness resulting from cis- and trans-regulatory mutations in Saccharomyces cerevisiae, with a focus on the TDH3 gene. We use the effects of cis-regulatory mutations to infer effects of trans-regulatory mutations attributable to impacts beyond the focal gene, revealing a distribution of pleiotropic effects. Cis- and trans-regulatory mutations had different effects on gene expression with pleiotropic effects of trans-regulatory mutants affecting expression of genes both in parallel to and downstream of the focal gene. The more widespread and deleterious effects of trans-regulatory mutations we observed are consistent with their decreasing relative contribution to expression differences over evolutionary time.


Asunto(s)
Evolución Molecular , Regulación Fúngica de la Expresión Génica , Aptitud Genética , Variación Genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Alelos , Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Heredity (Edinb) ; 127(5): 467-474, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34537820

RESUMEN

Pigmentation divergence between Drosophila species has emerged as a model trait for studying the genetic basis of phenotypic evolution, with genetic changes contributing to pigmentation differences often mapping to genes in the pigment synthesis pathway and their regulators. These studies of Drosophila pigmentation have tended to focus on pigmentation changes in one body part for a particular pair of species, but changes in pigmentation are often observed in multiple body parts between the same pair of species. The similarities and differences of genetic changes responsible for divergent pigmentation in different body parts of the same species thus remain largely unknown. Here we compare the genetic basis of pigmentation divergence between Drosophila elegans and D. gunungcola in the wing, legs, and thorax. Prior work has shown that regions of the genome containing the pigmentation genes yellow and ebony influence the size of divergent male-specific wing spots between these two species. We find that these same two regions of the genome underlie differences in leg and thorax pigmentation; however, divergent alleles in these regions show differences in allelic dominance and epistasis among the three body parts. These complex patterns of inheritance can be explained by a model of evolution involving tissue-specific changes in the expression of Yellow and Ebony between D. elegans and D. gunungcola.


Asunto(s)
Proteínas de Drosophila , Drosophila , Alelos , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Masculino , Pigmentación/genética , Especificidad de la Especie , Tórax
14.
Elife ; 102021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34463616

RESUMEN

Heritable variation in a gene's expression arises from mutations impacting cis- and trans-acting components of its regulatory network. Here, we investigate how trans-regulatory mutations are distributed within the genome and within a gene regulatory network by identifying and characterizing 69 mutations with trans-regulatory effects on expression of the same focal gene in Saccharomyces cerevisiae. Relative to 1766 mutations without effects on expression of this focal gene, we found that these trans-regulatory mutations were enriched in coding sequences of transcription factors previously predicted to regulate expression of the focal gene. However, over 90% of the trans-regulatory mutations identified mapped to other types of genes involved in diverse biological processes including chromatin state, metabolism, and signal transduction. These data show how genetic changes in diverse types of genes can impact a gene's expression in trans, revealing properties of trans-regulatory mutations that provide the raw material for trans-regulatory variation segregating within natural populations.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Nat Rev Genet ; 22(4): 203-215, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33268840

RESUMEN

Heritable variation in gene expression is common within and between species. This variation arises from mutations that alter the form or function of molecular gene regulatory networks that are then filtered by natural selection. High-throughput methods for introducing mutations and characterizing their cis- and trans-regulatory effects on gene expression (particularly, transcription) are revealing how different molecular mechanisms generate regulatory variation, and studies comparing these mutational effects with variation seen in the wild are teasing apart the role of neutral and non-neutral evolutionary processes. This integration of molecular and evolutionary biology allows us to understand how the variation in gene expression we see today came to be and to predict how it is most likely to evolve in the future.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica/genética , Selección Genética/genética , Alelos , Redes Reguladoras de Genes/genética , Variación Genética/genética , Mutación/genética
16.
Mol Ecol ; 29(15): 2840-2854, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32603541

RESUMEN

Phenotypic variation within a species is often structured geographically in clines. In Drosophila americana, a longitudinal cline for body colour exists within North America that appears to be due to local adaptation. The tan and ebony genes have been hypothesized to contribute to this cline, with alleles of both genes that lighten body colour found in D. americana. These alleles are similar in sequence and function to the allele fixed in D. americana's more lightly pigmented sister species, Drosophila novamexicana. Here, we examine the frequency and geographic distribution of these D. novamexicana-like alleles in D. americana. Among alleles from over 100 strains of D. americana isolated from 21 geographic locations, we failed to identify additional alleles of tan or ebony with as much sequence similarity to D. novamexicana as the D. novamexicana-like alleles previously described. However, using genetic analysis of 51 D. americana strains derived from 20 geographic locations, we identified one new allele of ebony and one new allele of tan segregating in D. americana that are functionally equivalent to the D. novamexicana allele. An additional 5 alleles of tan also showed marginal evidence of functional similarity. Given the rarity of these alleles, however, we conclude that they are unlikely to be driving the pigmentation cline. Indeed, phenotypic distributions of the 51 backcross populations analysed indicate a more complex genetic architecture, with diversity in the number and effects of loci altering pigmentation observed both within and among populations of D. americana. This genetic heterogeneity poses a challenge to association studies and genomic scans for clinal variation, but might be common in natural populations.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Color , Drosophila/genética , América del Norte , Pigmentación/genética
17.
Evolution ; 74(6): 1098-1111, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32363590

RESUMEN

The evolution of sexual traits often involves correlated changes in morphology and behavior. For example, in Drosophila, divergent mating displays are often accompanied by divergent pigment patterns. To better understand how such traits co-evolve, we investigated the genetic basis of correlated divergence in wing pigmentation and mating display between the sibling species Drosophila elegans and Drosophila gunungcola. Drosophila elegans males have an area of black pigment on their wings known as a wing spot and appear to display this spot to females by extending their wings laterally during courtship. By contrast, D. gunungcola lost both of these traits. Using Multiplexed Shotgun Genotyping (MSG), we identified a ∼440 kb region on the X chromosome that behaves like a genetic switch controlling the presence or absence of male-specific wing spots. This region includes the candidate gene optomotor-blind (omb), which plays a critical role in patterning the Drosophila wing. The genetic basis of divergent wing display is more complex, with at least two loci on the X chromosome and two loci on autosomes contributing to its evolution. Introgressing the X-linked region affecting wing spot development from D. gunungcola into D. elegans reduced pigmentation in the wing spots but did not affect the wing display, indicating that these are genetically separable traits. Consistent with this observation, broader sampling of wild D. gunungcola populations confirmed that the wing spot and wing display are evolving independently: some D. gunungcola males performed wing displays similar to D. elegans despite lacking wing spots. These data suggest that correlated selection pressures rather than physical linkage or pleiotropy are responsible for the coevolution of these morphological and behavioral traits. They also suggest that the change in morphology evolved prior to the change in behavior.


Asunto(s)
Coevolución Biológica , Drosophila/genética , Evolución Molecular , Pigmentación/genética , Conducta Sexual Animal , Animales , Femenino , Genes Ligados a X , Masculino , Caracteres Sexuales , Alas de Animales
18.
Front Ecol Evol ; 82020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37035752

RESUMEN

Drosophila pigmentation has been a fruitful model system for understanding the genetic and developmental mechanisms underlying phenotypic evolution. For example, prior work has shown that divergence of the tan gene contributes to pigmentation differences between two members of the virilis group: Drosophila novamexicana, which has a light yellow body color, and D. americana, which has a dark brown body color. Quantitative trait locus (QTL) mapping and expression analysis has suggested that divergence of the ebony gene might also contribute to pigmentation differences between these two species. Here, we directly test this hypothesis by using CRISPR/Cas9 genome editing to generate ebony null mutants in D. americana and D. novamexicana and then using reciprocal hemizygosity testing to compare the effects of each species' ebony allele on pigmentation. We find that divergence of ebony does indeed contribute to the pigmentation divergence between species, with effects on both the overall body color as well as a difference in pigmentation along the dorsal abdominal midline. Motivated by recent work in D. melanogaster, we also used the ebony null mutants to test for effects of ebony on cuticular hydrocarbon (CHC) profiles. We found that ebony affects CHC abundance in both species, but does not contribute to qualitative differences in the CHC profiles between these two species. Additional transgenic resources for working with D. americana and D. novamexicana, such as white mutants of both species and yellow mutants in D. novamexicana, were generated in the course of this work and are also described. Taken together, this study advances our understanding of loci contributing to phenotypic divergence and illustrates how the latest genome editing tools can be used for functional testing in non-model species.

19.
Evol Lett ; 3(5): 448-461, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31636938

RESUMEN

Heritable variation in gene expression is common within species. Much of this variation is due to genetic differences outside of the gene with altered expression and is trans-acting. This trans-regulatory variation is often polygenic, with individual variants typically having small effects, making the genetic architecture and evolution of trans-regulatory variation challenging to study. Consequently, key questions about trans-regulatory variation remain, including the variability of trans-regulatory variation within a species, how selection affects trans-regulatory variation, and how trans-regulatory variants are distributed throughout the genome and within a species. To address these questions, we isolated and measured trans-regulatory differences affecting TDH3 promoter activity among 56 strains of Saccharomyces cerevisiae, finding that trans-regulatory backgrounds varied approximately twofold in their effects on TDH3 promoter activity. Comparing this variation to neutral models of trans-regulatory evolution based on empirical measures of mutational effects revealed that despite this variability in the effects of trans-regulatory backgrounds, stabilizing selection has constrained trans-regulatory differences within this species. Using a powerful quantitative trait locus mapping method, we identified ∼100 trans-acting expression quantitative trait locus in each of three crosses to a common reference strain, indicating that regulatory variation is more polygenic than previous studies have suggested. Loci altering expression were located throughout the genome, and many loci were strain specific. This distribution and prevalence of alleles is consistent with recent theories about the genetic architecture of complex traits. In all mapping experiments, the nonreference strain alleles increased and decreased TDH3 promoter activity with similar frequencies, suggesting that stabilizing selection maintained many trans-acting variants with opposing effects. This variation may provide the raw material for compensatory evolution and larger scale regulatory rewiring observed in developmental systems drift among species.

20.
Elife ; 82019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31612860

RESUMEN

Drosophila melanogaster males perform a series of courtship behaviors that, when successful, result in copulation with a female. For over a century, mutations in the yellow gene, named for its effects on pigmentation, have been known to reduce male mating success. Prior work has suggested that yellow influences mating behavior through effects on wing extension, song, and/or courtship vigor. Here, we rule out these explanations, as well as effects on the nervous system more generally, and find instead that the effects of yellow on male mating success are mediated by its effects on pigmentation of male-specific leg structures called sex combs. Loss of yellow expression in these modified bristles reduces their melanization, which changes their structure and causes difficulty grasping females prior to copulation. These data illustrate why the mechanical properties of anatomy, not just neural circuitry, must be considered to fully understand the development and evolution of behavior.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Preferencia en el Apareamiento Animal/fisiología , Pigmentación/genética , Animales , Evolución Biológica , Fenómenos Biomecánicos , Copulación/fisiología , Cortejo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/metabolismo , Extremidades/anatomía & histología , Femenino , Regulación de la Expresión Génica , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...