Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biotechnol ; 349: 53-64, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35341894

RESUMEN

In recent years, acceleration of development timelines has become a major focus within the biopharmaceutical industry to bring innovative therapies faster to patients. However, in order to address a high unmet medical need even faster further acceleration potential has to be identified to transform "speed-to-clinic" concepts into "warp-speed" development programs. Recombinant Chinese hamster ovary (CHO) cell lines are the predominant expression system for monoclonal antibodies (mAbs) and are routinely generated by random transgene integration (RTI) of the genetic information into the host cell genome. This process, however, exhibits considerable challenges such as the requirement for a time-consuming clone screening process to identify a suitable clonally derived manufacturing cell line. Hence, RTI represents an error prone and tedious method leading to long development timelines until availability of Good Manufacturing Practice (GMP)-grade drug substance (DS). Transposase-mediated semi-targeted transgene integration (STI) has been recently identified as a promising alternative to RTI as it allows for a more rapid generation of high-performing and stable production cell lines. In this report, we demonstrate how a STI technology was leveraged to develop a very robust DS manufacturing process based on a stable pool cell line at unprecedented pace. Application of the novel strategy resulted in the manufacturing of GMP-grade DS at 2,000 L scale in less than three months paving the way for a start of Phase I clinical trials only six months after transfection. Finally, using a clonally derived production cell line, which was established from the parental stable pool, we were able to successfully implement a process with an increased mAb titer of up to 5 g per liter at the envisioned commercial scale (12,000 L) within eight months.


Asunto(s)
Anticuerpos Monoclonales , Enfermedades de Transmisión Sexual , Aceleración , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Enfermedades de Transmisión Sexual/tratamiento farmacológico , Transposasas
2.
Methods Mol Biol ; 1094: 329-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24163000

RESUMEN

Most methods currently available for the analysis of chromatin in vivo rely on a priori knowledge of putative chromatin components or their posttranslational modification state. The isolation of defined native chromosomal regions provides an attractive alternative to obtain a largely unbiased molecular description of chromatin. Here, we describe a strategy combining site-specific recombination at the chromosome with an efficient tandem affinity purification protocol to isolate a single-copy gene locus from the yeast Saccharomyces cerevisiae. The method allows robust enrichment of a targeted chromatin domain, making it amenable to compositional, structural, and biochemical analyses. This technique appears to be suitable to obtain a detailed description of chromatin composition and specific posttranslational histone modification state at virtually any genomic locus in yeast.


Asunto(s)
Bioquímica/métodos , Cromatina/metabolismo , Dosificación de Gen , Genes Fúngicos/genética , Sitios Genéticos , Saccharomyces cerevisiae/genética , Proliferación Celular , Cromatografía de Afinidad , ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Inmunoglobulina G/metabolismo , Fenómenos Magnéticos , Microesferas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo
3.
Nucleic Acids Res ; 42(1): 380-95, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24097442

RESUMEN

The cytotoxicity of UV light-induced DNA lesions results from their interference with transcription and replication. DNA lesions arrest elongating RNA polymerases, an event that triggers transcription-coupled nucleotide excision repair. Since arrested RNA polymerases reduce the accessibility of repair factors to DNA lesions, they might be displaced. The fate of arrested RNA polymerases-II at DNA lesions has been extensively studied, yielding partially contradictory results. Considerably less is known about RNA polymerases-I that transcribe nucleosomes-depleted rRNA genes at very high rate. To investigate the fate of arrested RNA polymerases-I at DNA lesions, chromatin-immunoprecipitation, electron microscopy, transcription run-on, psoralen-cross-linking and chromatin-endogenous cleavage were employed. We found that RNA polymerases-I density increased at the 5'-end of the gene, likely due to continued transcription initiation followed by elongation and pausing/release at the first DNA lesion. Most RNA polymerases-I dissociated downstream of the first DNA lesion, concomitant with chromatin closing that resulted from deposition of nucleosomes. Although nucleosomes were deposited, the high mobility group-box Hmo1 (component of actively transcribed rRNA genes) remained associated. After repair of DNA lesions, Hmo1 containing chromatin might help to restore transcription elongation and reopening of rRNA genes chromatin.


Asunto(s)
Cromatina/química , Daño del ADN , Reparación del ADN , Genes de ARNr , ARN Polimerasa I/metabolismo , Rayos Ultravioleta , Cromatina/efectos de la radiación , ADN Ribosómico/química , ADN Ribosómico/efectos de la radiación , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Dímeros de Pirimidina/metabolismo , ARN Ribosómico/biosíntesis , Levaduras/enzimología , Levaduras/efectos de la radiación
4.
Nucleic Acids Res ; 42(1): e2, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24106087

RESUMEN

Chromatin is the template for replication and transcription in the eukaryotic nucleus, which needs to be defined in composition and structure before these processes can be fully understood. We report an isolation protocol for the targeted purification of specific genomic regions in their native chromatin context from Saccharomyces cerevisiae. Subdomains of the multicopy ribosomal DNA locus containing transcription units of RNA polymerases I, II or III or an autonomous replication sequence were independently purified in sufficient amounts and purity to analyze protein composition and histone modifications by mass spectrometry. We present and discuss the proteomic data sets obtained for chromatin in different functional states. The native chromatin was further amenable to electron microscopy analysis yielding information about nucleosome occupancy and positioning at the single-molecule level. We also provide evidence that chromatin from virtually every single copy genomic locus of interest can be purified and analyzed by this technique.


Asunto(s)
Cromosomas Fúngicos/química , Saccharomyces cerevisiae/genética , Fosfatasa Ácida/genética , ADN Ribosómico/química , ADN Ribosómico/aislamiento & purificación , Genómica/métodos , Histonas/metabolismo , Espectrometría de Masas , Nucleosomas/química , Regiones Promotoras Genéticas , Proteoma/aislamiento & purificación , ARN Ribosómico 5S/química , ARN Ribosómico 5S/ultraestructura , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
5.
Biochim Biophys Acta ; 1829(3-4): 405-17, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23291532

RESUMEN

Eukaryotic transcription of ribosomal RNAs (rRNAs) by RNA polymerase I can account for more than half of the total cellular transcripts depending on organism and growth condition. To support this level of expression, eukaryotic rRNA genes are present in multiple copies. Interestingly, these genes co-exist in different chromatin states that may differ significantly in their nucleosome content and generally correlate well with transcriptional activity. Here we review how these chromatin states have been discovered and characterized focusing particularly on their structural protein components. The establishment and maintenance of rRNA gene chromatin states and their impact on rRNA synthesis are discussed. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Asunto(s)
Cromatina/química , ADN Ribosómico/química , Transcripción Genética , Animales , Cromatina/metabolismo , ADN Ribosómico/metabolismo , Epigénesis Genética , Sitios Genéticos , Humanos , ARN Polimerasa I/metabolismo , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética
6.
Methods Mol Biol ; 809: 291-301, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22113284

RESUMEN

In eukaryotes, multiple copies of ribosomal RNA (rRNA) genes co-exist in two different chromatin states: actively transcribed (nucleosome depleted) chromatin, and nontranscribed (nucleosomal) chromatin. The presence of two rRNA gene populations compromises the interpretation of analyses obtained by the standard biochemical methods that are used to study chromatin structure (e.g., nuclease digestion and chromatin immunoprecipitation). Here, we provide a protocol to investigate the specific association of proteins with the two rRNA gene chromatin populations in vivo, using Saccharomyces cerevisiae as a model eukaryote.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Ficusina/química , Genes de ARNr/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
7.
Cell ; 145(4): 543-54, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21565613

RESUMEN

In eukaryotes, each of the more than 100 copies of ribosomal RNA (rRNA) genes exists in either an RNA polymerase I transcribed open chromatin state or a nucleosomal, closed chromatin state. Open rRNA genes guarantee the cell's supply with structural components of the ribosome, whereas closed rRNA genes ensure genomic integrity. We report that the observed balance between open and closed rRNA gene chromatin states in proliferating yeast cells is due to a dynamic equilibrium of transcription-dependent removal and replication-dependent assembly of nucleosomes. Pol I transcription is required for the association of the HMG box protein Hmo1 with open rRNA genes, counteracting replication-independent nucleosome deposition and maintaining the open rRNA gene chromatin state outside of S phase. The findings indicate that the opposing effects of replication and transcription lead to a de novo establishment of chromatin states for rRNA genes during each cell cycle.


Asunto(s)
Cromatina/metabolismo , Genes de ARNr , Saccharomyces cerevisiae/citología , Ciclo Celular , Replicación del ADN , ADN Ribosómico/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
8.
Mol Cell Biol ; 30(8): 2028-45, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20154141

RESUMEN

In all eukaryotes, a specialized enzyme, RNA polymerase I (Pol I), is dedicated to transcribe the 35S rRNA gene from a multicopy gene cluster, the ribosomal DNA (rDNA). In certain Saccharomyces cerevisiae mutants, 35S rRNA genes can be transcribed by RNA polymerase II (Pol II). In these mutants, rDNA silencing of Pol II transcription is impaired. It has been speculated that upstream activating factor (UAF), which binds to a specific DNA element within the Pol I promoter, plays a crucial role in forming chromatin structures responsible for polymerase specificity and silencing at the rDNA locus. We therefore performed an in-depth analysis of chromatin structure and composition in different mutant backgrounds. We demonstrate that chromatin architecture of the entire Pol I-transcribed region is substantially altered in the absence of UAF, allowing RNA polymerases II and III to access DNA elements flanking a Pol promoter-proximal Reb1 binding site. Furthermore, lack of UAF leads to the loss of Sir2 from rDNA, correlating with impaired Pol II silencing. This analysis of rDNA chromatin provides a molecular basis, explaining many phenotypes observed in previous genetic analyses.


Asunto(s)
Cromatina/química , Conformación de Ácido Nucleico , ARN Polimerasa II/metabolismo , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Cromatina/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , ARN Polimerasa I/genética , ARN Polimerasa II/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA