Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 7(5): e0023922, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36102507

RESUMEN

A healthy state of the vaginal microbiome can prevent vaginal disease and promote successful fertilization and healthy pregnancies. Little is known about the stability of the vaginal microbiome and the influence of factors such as diet and probiotics. While less explored, yeast probiotics have an interesting potential because of their immunomodulatory and pathogen inhibition capacities. In this study, we investigated the impact of the oral yeast probiotic Saccharomyces cerevisiae CNCM I-3856 on the vaginal microbiomes of 52 healthy women using 16S and internal transcribed spacer (ITS) amplicon sequencing and quantitative PCR (qPCR). The vaginal fungal loads remained low, even after oral yeast supplementation, complicating the analysis of the vaginal mycobiome. Lactobacillus crispatus and Lactobacillus iners were the most dominant species in our study population and were found to codominate in 23% of the baseline samples. Bifidobacterium, Streptococcus, and Prevotella were also frequently found. The microbiome profiles were dynamic: 69% of women showed a shift in the dominant community members at least once during the 42-day sampling period. In addition, lower Lactobacillus abundances were observed at the time points after menstruation. Higher relative abundances of Lactobacillus with more L. iners-dominated samples and a trend toward lower relative abundances of Prevotella were observed in the probiotic group, but analyses of the effects of the yeast probiotic were complicated by differences already present at the onset of the study. Thus, our findings especially highlighted that the impact of menstruation and the stratification of women based on the dominant vaginal taxa before randomization and inclusion is important for future research: while the impact of the yeast probiotic on vaginal microbiome in healthy women was limited. IMPORTANCE How to define and promote a healthy state of the vaginal microbiome is not well understood. Knowledge of which underlying factors shape the microbial community composition of the vagina and how to modulate them will contribute to vaginal disease prevention and improve fertility. Here, we found that taking the menstrual cycle into account when designing a microbiome study is highly recommended: menstruation also showed to be poses an interesting time point for intervention because of the drop in the abundance of L. crispatus. Furthermore, the early stratification of groups (e.g., placebo versus treatment) according to the dominant taxa can be of high added value since menstruation impacts vaginal taxa differently, i.e., L. iners remains stable, in contrast to L. crispatus.


Asunto(s)
Microbiota , Probióticos , Enfermedades Vaginales , Embarazo , Humanos , Femenino , Saccharomyces cerevisiae , Menstruación , Vagina/microbiología
2.
Lett Appl Microbiol ; 75(5): 1275-1285, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35938312

RESUMEN

Purple non-sulphur bacteria (PNSB) are an emerging group of microbes attractive for applied microbiology applications such as wastewater treatment, plant biostimulants, microbial protein, polyhydroxyalkanoates and H2 production. These photoorganoheterotrophic microbes have the unique ability to grow selectively on organic carbon in anaerobic photobioreactors. This so-called selectivity implies that the microbial community will have a low diversity and a high abundance of a particular PNSB species. Recently, it has been shown that certain PNSB strains can produce antimicrobials, yet it remains unclear whether these contribute to competitive inhibition. This research aimed to understand which type of antimicrobial PNSB produce and identify whether these compounds contribute to their selective growth. Mining 166 publicly-available PNSB genomes using the computational tool BAGEL showed that 59% contained antimicrobial encoding regions, more specifically biosynthetic clusters of bacteriocins and non-ribosomal peptide synthetases. Inter- and intra-species inhibition was observed in agar spot assays for Rhodobacter blasticus EBR2 and Rhodopseudomonas palustris EBE1 with inhibition zones of, respectively, 5.1 and 1.5-5.7 mm. Peptidomic analysis detected a peptide fragment in the supernatant (SVLQLLR) that had a 100% percentage identity match with a known non-ribosomal peptide synthetase with antimicrobial activity.


Asunto(s)
Antiinfecciosos , Bacteriocinas , Polihidroxialcanoatos , Proteobacteria/metabolismo , Agar , Carbono/metabolismo , Péptido Sintasas , Fragmentos de Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...