Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38359819

RESUMEN

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Terapia Combinada , Genómica , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Proteómica , Escape del Tumor
2.
Cancer Cell ; 41(9): 1567-1585.e7, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37582362

RESUMEN

DNA methylation plays a critical role in establishing and maintaining cellular identity. However, it is frequently dysregulated during tumor development and is closely intertwined with other genetic alterations. Here, we leveraged multi-omic profiling of 687 tumors and matched non-involved adjacent tissues from the kidney, brain, pancreas, lung, head and neck, and endometrium to identify aberrant methylation associated with RNA and protein abundance changes and build a Pan-Cancer catalog. We uncovered lineage-specific epigenetic drivers including hypomethylated FGFR2 in endometrial cancer. We showed that hypermethylated STAT5A is associated with pervasive regulon downregulation and immune cell depletion, suggesting that epigenetic regulation of STAT5A expression constitutes a molecular switch for immunosuppression in squamous tumors. We further demonstrated that methylation subtype-enrichment information can explain cell-of-origin, intra-tumor heterogeneity, and tumor phenotypes. Overall, we identified cis-acting DNA methylation events that drive transcriptional and translational changes, shedding light on the tumor's epigenetic landscape and the role of its cell-of-origin.


Asunto(s)
Metilación de ADN , Neoplasias Endometriales , Femenino , Humanos , Epigénesis Genética , Multiómica , Regulación Neoplásica de la Expresión Génica , Neoplasias Endometriales/genética
3.
Nat Cancer ; 4(5): 608-628, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37127787

RESUMEN

One key barrier to improving efficacy of personalized cancer immunotherapies that are dependent on the tumor antigenic landscape remains patient stratification. Although patients with CD3+CD8+ T cell-inflamed tumors typically show better response to immune checkpoint inhibitors, it is still unknown whether the immunopeptidome repertoire presented in highly inflamed and noninflamed tumors is substantially different. We surveyed 61 tumor regions and adjacent nonmalignant lung tissues from 8 patients with lung cancer and performed deep antigen discovery combining immunopeptidomics, genomics, bulk and spatial transcriptomics, and explored the heterogeneous expression and presentation of tumor (neo)antigens. In the present study, we associated diverse immune cell populations with the immunopeptidome and found a relatively higher frequency of predicted neoantigens located within HLA-I presentation hotspots in CD3+CD8+ T cell-excluded tumors. We associated such neoantigens with immune recognition, supporting their involvement in immune editing. This could have implications for the choice of combination therapies tailored to the patient's mutanome and immune microenvironment.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Antígenos de Neoplasias/metabolismo , Inmunoterapia , Inflamación , Microambiente Tumoral
4.
Cells ; 10(8)2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34440702

RESUMEN

TRIM28, a multi-domain protein, is crucial in the development of mouse embryos and the maintenance of embryonic stem cells' (ESC) self-renewal potential. As the epigenetic factor modulating chromatin structure, TRIM28 regulates the expression of numerous genes and is associated with progression and poor prognosis in many types of cancer. Because of many similarities between highly dedifferentiated cancer cells and normal pluripotent stem cells, we applied human induced pluripotent stem cells (hiPSC) as a model for stemness studies. For the first time in hiPSC, we analyzed the function of individual TRIM28 domains. Here we demonstrate the essential role of a really interesting new gene (RING) domain and plant homeodomain (PHD) in regulating pluripotency maintenance and self-renewal capacity of hiPSC. Our data indicate that mutation within the RING or PHD domain leads to the loss of stem cell phenotypes and downregulation of the FGF signaling. Moreover, impairment of RING or PHD domain results in decreased proliferation and impedes embryoid body formation. In opposition to previous data indicating the impact of phosphorylation on TRIM28 function, our data suggest that TRIM28 phosphorylation does not significantly affect the pluripotency and self-renewal maintenance of hiPSC. Of note, iPSC with disrupted RING and PHD functions display downregulation of genes associated with tumor metastasis, which are considered important targets in cancer treatment. Our data suggest the potential use of RING and PHD domains of TRIM28 as targets in cancer therapy.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Dedos de Zinc PHD , Dominios RING Finger , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Autorrenovación de las Células , Células Cultivadas , Epigénesis Genética , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Transducción de Señal
5.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33212010

RESUMEN

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Terapia Molecular Dirigida , Proteogenómica , Desaminasas APOBEC/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Estudios de Cohortes , Daño del ADN , Reparación del ADN , Femenino , Humanos , Inmunoterapia , Metabolómica , Persona de Mediana Edad , Mutagénesis/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Receptor ErbB-2/metabolismo , Proteína de Retinoblastoma/metabolismo , Microambiente Tumoral/inmunología
6.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649874

RESUMEN

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteogenómica , Adenocarcinoma del Pulmón/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas de Fusión Oncogénica , Fenotipo , Fosfoproteínas/metabolismo , Proteoma/metabolismo
7.
Nat Commun ; 11(1): 1293, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32157095

RESUMEN

Efforts to precisely identify tumor human leukocyte antigen (HLA) bound peptides capable of mediating T cell-based tumor rejection still face important challenges. Recent studies suggest that non-canonical tumor-specific HLA peptides derived from annotated non-coding regions could elicit anti-tumor immune responses. However, sensitive and accurate mass spectrometry (MS)-based proteogenomics approaches are required to robustly identify these non-canonical peptides. We present an MS-based analytical approach that characterizes the non-canonical tumor HLA peptide repertoire, by incorporating whole exome sequencing, bulk and single-cell transcriptomics, ribosome profiling, and two MS/MS search tools in combination. This approach results in the accurate identification of hundreds of shared and tumor-specific non-canonical HLA peptides, including an immunogenic peptide derived from an open reading frame downstream of the melanoma stem cell marker gene ABCB5. These findings hold great promise for the discovery of previously unknown tumor antigens for cancer immunotherapy.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Melanoma/genética , Melanoma/inmunología , Péptidos/genética , Proteogenómica , Secuencia de Aminoácidos , Línea Celular Tumoral , Bases de Datos de Proteínas , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Péptidos/química , ARN/genética , ARN/metabolismo , Linfocitos T/metabolismo
8.
Rep Pract Oncol Radiother ; 24(2): 180-187, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820192

RESUMEN

Induced pluripotent stem cells derived from normal somatic cells could be utilized to study tumorigenesis through overexpression of specific oncogenes, downregulation of tumor suppressors and dysregulation of other factors thought to promote tumorigenesis. Therefore, effective approaches that provide direct modifications of induced pluripotent stem cell genome are extremely needed. Emerging strategies are expected to provide the ability to more effectively introduce diverse genetic alterations, from as small as single-nucleotide modifications to whole gene amplification or deletion, all with a high degree of target specificity. To date, several techniques have been applied in stem cell studies to directly edit cell genome (ZFNs, TALENs or CRISPR/Cas9). In this review, we summarize specific gene delivery strategies that were applied to stem cell studies together with genome editing techniques, which enable a direct modification of endogenous DNA sequences in the context of cancer studies.

9.
Cell Syst ; 7(4): 422-437.e7, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30268436

RESUMEN

We present an integromic analysis of gene alterations that modulate transforming growth factor ß (TGF-ß)-Smad-mediated signaling in 9,125 tumor samples across 33 cancer types in The Cancer Genome Atlas (TCGA). Focusing on genes that encode mediators and regulators of TGF-ß signaling, we found at least one genomic alteration (mutation, homozygous deletion, or amplification) in 39% of samples, with highest frequencies in gastrointestinal cancers. We identified mutation hotspots in genes that encode TGF-ß ligands (BMP5), receptors (TGFBR2, AVCR2A, and BMPR2), and Smads (SMAD2 and SMAD4). Alterations in the TGF-ß superfamily correlated positively with expression of metastasis-associated genes and with decreased survival. Correlation analyses showed the contributions of mutation, amplification, deletion, DNA methylation, and miRNA expression to transcriptional activity of TGF-ß signaling in each cancer type. This study provides a broad molecular perspective relevant for future functional and therapeutic studies of the diverse cancer pathways mediated by the TGF-ß superfamily.


Asunto(s)
Tasa de Mutación , Neoplasias/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteína Morfogenética Ósea 5/genética , Proteína Morfogenética Ósea 5/metabolismo , Metilación de ADN , Humanos , MicroARNs/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/genética
10.
Rep Pract Oncol Radiother ; 23(3): 207-214, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760595

RESUMEN

As soon as induced pluripotent stem cells (iPSCs) reprogramming of somatic cells were developed, the discovery attracted the attention of scientists, offering new perspectives for personalized medicine and providing a powerful platform for drug testing. The technology was almost immediately applied to cancer studies. As presented in this review, direct reprogramming of cancer cells with enforced expression of pluripotency factors have several basic purposes, all of which aim to explain the complex nature of cancer development and progression, therapy-resistance and relapse, and ultimately lead to the development of novel anti-cancer therapies. Here, we briefly present recent advances in reprogramming methodologies as well as commonalities between cell reprogramming and carcinogenesis and discuss recent outcomes from the implementation of induced pluripotency into cancer research.

11.
Cell Rep ; 23(2): 637-651, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642018

RESUMEN

Glioma diagnosis is based on histomorphology and grading; however, such classification does not have predictive clinical outcome after glioblastomas have developed. To date, no bona fide biomarkers that significantly translate into a survival benefit to glioblastoma patients have been identified. We previously reported that the IDH mutant G-CIMP-high subtype would be a predecessor to the G-CIMP-low subtype. Here, we performed a comprehensive DNA methylation longitudinal analysis of diffuse gliomas from 77 patients (200 tumors) to enlighten the epigenome-based malignant transformation of initially lower-grade gliomas. Intra-subtype heterogeneity among G-CIMP-high primary tumors allowed us to identify predictive biomarkers for assessing the risk of malignant recurrence at early stages of disease. G-CIMP-low recurrence appeared in 9.5% of all gliomas, and these resembled IDH-wild-type primary glioblastoma. G-CIMP-low recurrence can be characterized by distinct epigenetic changes at candidate functional tissue enhancers with AP-1/SOX binding elements, mesenchymal stem cell-like epigenomic phenotype, and genomic instability. Molecular abnormalities of longitudinal G-CIMP offer possibilities to defy glioblastoma progression.


Asunto(s)
Neoplasias Encefálicas/patología , Metilación de ADN , Glioma/patología , Recurrencia Local de Neoplasia/genética , Adulto , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , Islas de CpG , Femenino , Inestabilidad Genómica , Glioma/genética , Glioma/mortalidad , Glioma/terapia , Humanos , Isocitrato Deshidrogenasa/genética , Estimación de Kaplan-Meier , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Fenotipo , Pronóstico
12.
Cell ; 173(2): 291-304.e6, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625048

RESUMEN

We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.


Asunto(s)
Neoplasias/patología , Aneuploidia , Cromosomas/genética , Análisis por Conglomerados , Islas de CpG , Metilación de ADN , Bases de Datos Factuales , Humanos , MicroARNs/metabolismo , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , ARN Mensajero/metabolismo
13.
Cell ; 173(2): 338-354.e15, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625051

RESUMEN

Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.


Asunto(s)
Desdiferenciación Celular/genética , Aprendizaje Automático , Neoplasias/patología , Carcinogénesis , Metilación de ADN , Bases de Datos Genéticas , Epigénesis Genética , Humanos , MicroARNs/metabolismo , Metástasis de la Neoplasia , Neoplasias/genética , Células Madre/citología , Células Madre/metabolismo , Transcriptoma , Microambiente Tumoral
14.
Stem Cell Reports ; 9(6): 2065-2080, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29198826

RESUMEN

Reprogramming to induced pluripotent stem cells (iPSCs) and differentiation of pluripotent stem cells (PSCs) are regulated by epigenetic machinery. Tripartite motif protein 28 (TRIM28), a universal mediator of Krüppel-associated box domain zinc fingers (KRAB-ZNFs), is known to regulate both processes; however, the exact mechanism and identity of participating KRAB-ZNF genes remain unknown. Here, using a reporter system, we show that TRIM28/KRAB-ZNFs alter DNA methylation patterns in addition to H3K9me3 to cause stable gene repression during reprogramming. Using several expression datasets, we identified KRAB-ZNFs (ZNF114, ZNF483, ZNF589) in the human genome that maintain pluripotency. Moreover, we identified target genes repressed by these KRAB-ZNFs. Mechanistically, we demonstrated that these KRAB-ZNFs directly alter gene expression of important developmental genes by modulating H3K9me3 and DNA methylation of their promoters. In summary, TRIM28 employs KRAB-ZNFs to evoke epigenetic silencing of its target differentiation genes via H3K9me3 and DNA methylation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito/genética , Sitios de Unión , Autorrenovación de las Células/genética , Reprogramación Celular/genética , Metilación de ADN/genética , Represión Epigenética , Regulación del Desarrollo de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas
15.
Oncotarget ; 8(47): 82123-82143, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29137250

RESUMEN

Utilizing the TCGA PANCAN12 dataset we discovered that cancer patients with mutations in TP53 tumor suppressor and overexpression of MDM2 oncogene exhibited decreased survival post treatment. Interestingly, in the case of breast cancer patients, this phenomenon correlated with high expression level of several molecular chaperones belonging to the HSPA, DNAJB and HSPC families. To verify the hypothesis that such a genetic background may promote chaperone-mediated chemoresistance, we employed breast and lung cancer cell lines that constitutively overexpressed heat shock proteins and have shown that HSPA1A/HSP70 and DNAJB1/HSP40 facilitated the binding of mutated p53 to the TAp73α protein. This chaperone-mediated mutated p53-TAp73α complex induced chemoresistance to DNA damaging reagents, like Cisplatin, Doxorubicin, Etoposide or Camptothecin. Importantly, when the MDM2 oncogene was overexpressed, heat shock proteins were displaced and a stable multiprotein complex comprising of mutated p53-TAp73α-MDM2 was formed, additionally amplifying cancer cells chemoresistance. Our findings demonstrate that molecular chaperones aid cancer cells in surviving the cytotoxic effect of chemotherapeutics and may have therapeutic implications.

16.
Stem Cell Res ; 23: 163-172, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28759843

RESUMEN

Cellular reprogramming proceeds in a stepwise pathway initiated by binding and transcription of pluripotency factors followed by genome-wide epigenetic changes. Priming events, such as erasure of DNA methylation and chromatin remodeling determines the success of pluripotency acquisition later. Therefore, growing efforts are made to understand epigenetic regulatory network that makes reprogramming possible and efficient. Here, we analyze the role of transcriptional corepressor TRIM28, involved in heterochromatin formation, during the process of reprogramming of mouse somatic cells into induced pluripotent stem cells (iPS cells). We demonstrate that Trim28 knockdown (Trim28 KD) causes that emerging iPS cells differentiate immediately back into MEFs therefore they fail to yield stable iPS cell colonies. To better comprehend the mechanism of TRIM28 action in reprogramming, we performed a reverse-phase protein array (RPPA) using in excess of 300 different antibodies and compared the proteomic profiles of wild-type and Trim28 KD cells during reprogramming. We revealed the differences in the dynamics of reprogramming of wild-type and Trim28 KD cells. Interestingly, proteomic profile of Trim28 KD cells at the final stage of reprogramming resembled differentiated state rather than maintenance of pluripotency and self-renewal, strongly suggesting spontaneous differentiation of Trim28 KD cells back to their parental cell type. We also observed that action of TRIM28 in reprogramming is accompanied by differential enrichment of proteins involved in cell cycle, adhesion and stemness. Collectively, these results suggest that regulation of epigenetic modifications coordinated by TRIM28 plays a crucial role in reprogramming process.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Epigénesis Genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Reprogramación Celular , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células Madre Pluripotentes Inducidas/citología , Ratones , Análisis por Matrices de Proteínas
17.
J Biomed Sci ; 24(1): 63, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851455

RESUMEN

Since the first discovery in 1996, the engagement of TRIM28 in distinct aspects of cellular biology has been extensively studied resulting in identification of a complex nature of TRIM28 protein. In this review, we summarize core biological functions of TRIM28 that emerge from TRIM28 multi-domain structure and possessed enzymatic activities. Moreover, we will discuss whether the complexity of TRIM28 engagement in cancer biology makes TRIM28 a possible candidate for targeted anti-cancer therapy. Briefly, we will demonstrate the role of TRIM28 in regulation of target gene transcription, response to DNA damage, downregulation of p53 activity, stimulation of epithelial-to-mesenchymal transition, stemness sustainability, induction of autophagy and regulation of retrotransposition, to provide the answer whether TRIM28 functions as a stimulator or inhibitor of tumorigenesis. To date, number of studies demonstrate significant upregulation of TRIM28 expression in cancer tissues which correlates with worse overall patient survival, suggesting that TRIM28 supports cancer progression. Here, we present distinct aspects of TRIM28 involvement in regulation of cancer cell homeostasis which collectively imply pro-tumorigenic character of TRIM28. Thorough analyses are further needed to verify whether TRIM28 possess the potential to become a new anti-cancer target.


Asunto(s)
Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Células Neoplásicas Circulantes/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética , Homeostasis , Humanos , Proteína 28 que Contiene Motivos Tripartito/metabolismo
18.
Oncotarget ; 8(1): 863-882, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27845900

RESUMEN

The expression of Tripartite motif-containing protein 28 (TRIM28)/Krüppel-associated box (KRAB)-associated protein 1 (KAP1), is elevated in at least 14 tumor types, including solid and hematopoietic tumors. High level of TRIM28 is associated with triple-negative subtype of breast cancer (TNBC), which shows higher aggressiveness and lower survival rates. Interestingly, TRIM28 is essential for maintaining the pluripotent phenotype in embryonic stem cells. Following on that finding, we evaluated the role of TRIM28 protein in the regulation of breast cancer stem cells (CSC) populations and tumorigenesis in vitro and in vivo. Downregulation of TRIM28 expression in xenografts led to deceased expression of pluripotency and mesenchymal markers, as well as inhibition of signaling pathways involved in the complex mechanism of CSC maintenance. Moreover, TRIM28 depletion reduced the ability of cancer cells to induce tumor growth when subcutaneously injected in limiting dilutions. Our data demonstrate that the downregulation of TRIM28 gene expression reduced the ability of CSCs to self-renew that resulted in significant reduction of tumor growth. Loss of function of TRIM28 leads to dysregulation of cell cycle, cellular response to stress, cancer cell metabolism, and inhibition of oxidative phosphorylation. All these mechanisms directly regulate maintenance of CSC population. Our original results revealed the role of the TRIM28 in regulating the CSC population in breast cancer. These findings may pave the way to novel and more effective therapies targeting cancer stem cells in breast tumors.


Asunto(s)
Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/metabolismo , Células Madre Neoplásicas/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Biomarcadores , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo Energético , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Ratones , Metástasis de la Neoplasia , Fosforilación Oxidativa , Pronóstico , Modelos de Riesgos Proporcionales , Recurrencia , Transducción de Señal , Proteína 28 que Contiene Motivos Tripartito/química , Proteína 28 que Contiene Motivos Tripartito/genética , Neoplasias de la Mama Triple Negativas/etiología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
19.
Medicine (Baltimore) ; 94(21): e853, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26020391

RESUMEN

UNLABELLED: Active specific immunotherapy of cancer requires an efficient induction and effector phase. The induction covers potent activation of anti-tumor response, whereas effector breaks the immunosuppression. We report efficacy of therapeutic melanoma vaccine (AGI-101H) used alone in advanced disease as a candidate for further combined treatment. In adjuvant setting in patients with resected metastases AGI-101H combined with surgery of recurring disease demonstrated long-term survival. Seventy-seven patients with nonresectable melanoma (8% IIIB, 21% IIIC, 71% IV) were enrolled. AGI-101H was administered 8× every 2 weeks, and then every month. At progression, maintenance was continued or induction was repeated and followed by maintenance. Median follow-up was 139.3 months. The median overall survival (OS) was 17.3 months; in patients with WHO 0-1 was 20.3 months. Complete response (CR) and partial response (PR) were observed in 19.4% and 9% of pts. Disease control rate was 54.5% of pts. The median CR+PR duration was 32 months. Reinduction was performed in 36.3% patients following disease progression with 46.6% of CR+PR. No grade 3/4 adverse events were observed. Treatment with AGI-101H of melanoma patients is safe and effective. AGI-101H is a good candidate for combinatorial treatment with immune check-points inhibitors or tumor hypoxia normalizators. TRIAL REGISTRATION: EudraCT Number 2008-003373-40.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Interleucina-6/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/patología , Receptores de Interleucina-6/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/efectos adversos , Terapia Combinada , Femenino , Humanos , Interleucina-6/administración & dosificación , Interleucina-6/efectos adversos , Masculino , Melanoma/cirugía , Metástasis de la Neoplasia , Estadificación de Neoplasias , Inducción de Remisión , Análisis de Supervivencia
20.
Contemp Oncol (Pozn) ; 19(1A): A68-77, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25691825

RESUMEN

The Cancer Genome Atlas (TCGA) is a public funded project that aims to catalogue and discover major cancer-causing genomic alterations to create a comprehensive "atlas" of cancer genomic profiles. So far, TCGA researchers have analysed large cohorts of over 30 human tumours through large-scale genome sequencing and integrated multi-dimensional analyses. Studies of individual cancer types, as well as comprehensive pan-cancer analyses have extended current knowledge of tumorigenesis. A major goal of the project was to provide publicly available datasets to help improve diagnostic methods, treatment standards, and finally to prevent cancer. This review discusses the current status of TCGA Research Network structure, purpose, and achievements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...