Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Emerg Infect Dis ; 24(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29261093

RESUMEN

Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification.


Asunto(s)
Desinfectantes/farmacología , Ebolavirus/efectos de los fármacos , Blanqueadores/farmacología , Células Cultivadas/virología , Pruebas con Sangre Seca , Humanos , Laboratorios , Ácido Peracético/farmacología
2.
PLoS One ; 11(2): e0148476, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26849135

RESUMEN

In support of the response to the 2013-2016 Ebola virus disease (EVD) outbreak in Western Africa, we investigated the persistence of Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 (EBOV/Mak-C05) on non-porous surfaces that are representative of hospitals, airplanes, and personal protective equipment. We performed persistence studies in three clinically-relevant human fluid matrices (blood, simulated vomit, and feces), and at environments representative of in-flight airline passenger cabins, environmentally-controlled hospital rooms, and open-air Ebola treatment centers in Western Africa. We also compared the surface stability of EBOV/Mak-C05 to that of the prototype Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga (EBOV/Yam-May), in a subset of these conditions. We show that on inert, non-porous surfaces, EBOV decay rates are matrix- and environment-dependent. Among the clinically-relevant matrices tested, EBOV persisted longest in dried human blood, had limited viability in dried simulated vomit, and did not persist in feces. EBOV/Mak-C05 and EBOV/Yam-May decay rates in dried matrices were not significantly different. However, during the drying process in human blood, EBOV/Yam-May showed significantly greater loss in viability than EBOV/Mak-C05 under environmental conditions relevant to the outbreak region, and to a lesser extent in conditions relevant to an environmentally-controlled hospital room. This factor may contribute to increased communicability of EBOV/Mak-C05 when surfaces contaminated with dried human blood are the vector and may partially explain the magnitude of the most recent outbreak, compared to prior outbreaks. These EBOV persistence data will improve public health efforts by informing risk assessments, structure remediation decisions, and response procedures for future EVD outbreaks.


Asunto(s)
Ebolavirus/fisiología , Equipo de Protección Personal/virología , Animales , Sangre/virología , Chlorocebus aethiops , Ebolavirus/patogenicidad , Heces/virología , Humanos , Humedad , Especificidad de la Especie , Células Vero/virología , Vómitos/virología
3.
PLoS One ; 10(9): e0138843, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26413900

RESUMEN

Marburg virus infection in humans causes a hemorrhagic disease with a high case fatality rate. Countermeasure development requires the use of well-characterized animal models that mimic human disease. To further characterize the cynomolgus macaque model of MARV/Angola, two independent dose response studies were performed using the intramuscular or aerosol routes of exposure. All animals succumbed at the lowest target dose; therefore, a dose effect could not be determined. For intramuscular-exposed animals, 100 PFU was the first target dose that was not significantly different than higher target doses in terms of time to disposition, clinical pathology, and histopathology. Although a significant difference was not observed between aerosol-exposed animals in the 10 PFU and 100 PFU target dose groups, 100 PFU was determined to be the lowest target dose that could be consistently obtained and accurately titrated in aerosol studies.


Asunto(s)
Aerosoles/administración & dosificación , Enfermedad del Virus de Marburg/virología , Marburgvirus/fisiología , Animales , Inyecciones Intramusculares , Estimación de Kaplan-Meier , Macaca fascicularis , Enfermedad del Virus de Marburg/sangre , ARN Viral/sangre , Temperatura
4.
J Virol ; 89(19): 9875-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26202230

RESUMEN

UNLABELLED: Marburg virus (MARV) infection is a lethal hemorrhagic fever for which no licensed vaccines or therapeutics are available. Development of appropriate medical countermeasures requires a thorough understanding of the interaction between the host and the pathogen and the resulting disease course. In this study, 15 rhesus macaques were sequentially sacrificed following aerosol exposure to the MARV variant Angola, with longitudinal changes in physiology, immunology, and histopathology used to assess disease progression. Immunohistochemical evidence of infection and resulting histopathological changes were identified as early as day 3 postexposure (p.e.). The appearance of fever in infected animals coincided with the detection of serum viremia and plasma viral genomes on day 4 p.e. High (>10(7) PFU/ml) viral loads were detected in all major organs (lung, liver, spleen, kidney, brain, etc.) beginning day 6 p.e. Clinical pathology findings included coagulopathy, leukocytosis, and profound liver destruction as indicated by elevated liver transaminases, azotemia, and hypoalbuminemia. Altered cytokine expression in response to infection included early increases in Th2 cytokines such as interleukin 10 (IL-10) and IL-5 and late-stage increases in Th1 cytokines such as IL-2, IL-15, and granulocyte-macrophage colony-stimulating factor (GM-CSF). This study provides a longitudinal examination of clinical disease of aerosol MARV Angola infection in the rhesus macaque model. IMPORTANCE: In this study, we carefully analyzed the timeline of Marburg virus infection in nonhuman primates in order to provide a well-characterized model of disease progression following aerosol exposure.


Asunto(s)
Citocinas/sangre , Interacciones Huésped-Patógeno , Enfermedad del Virus de Marburg/fisiopatología , Marburgvirus/patogenicidad , Aerosoles , Animales , Progresión de la Enfermedad , Inmunohistoquímica , Estudios Longitudinales , Macaca mulatta , Enfermedad del Virus de Marburg/sangre , Factores de Tiempo , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...