Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Lancet Haematol ; 11(5): e368-e382, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697731

RESUMEN

Diamond-Blackfan anaemia (DBA), first described over 80 years ago, is a congenital disorder of erythropoiesis with a predilection for birth defects and cancer. Despite scientific advances, this chronic, debilitating, and life-limiting disorder continues to cause a substantial physical, psychological, and financial toll on patients and their families. The highly complex medical needs of affected patients require specialised expertise and multidisciplinary care. However, gaps remain in effectively bridging scientific discoveries to clinical practice and disseminating the latest knowledge and best practices to providers. Following the publication of the first international consensus in 2008, advances in our understanding of the genetics, natural history, and clinical management of DBA have strongly supported the need for new consensus recommendations. In 2014 in Freiburg, Germany, a panel of 53 experts including clinicians, diagnosticians, and researchers from 27 countries convened. With support from patient advocates, the panel met repeatedly over subsequent years, engaging in ongoing discussions. These meetings led to the development of new consensus recommendations in 2024, replacing the previous guidelines. To account for the diverse phenotypes including presentation without anaemia, the panel agreed to adopt the term DBA syndrome. We propose new simplified diagnostic criteria, describe the genetics of DBA syndrome and its phenocopies, and introduce major changes in therapeutic standards. These changes include lowering the prednisone maintenance dose to maximum 0·3 mg/kg per day, raising the pre-transfusion haemoglobin to 9-10 g/dL independent of age, recommending early aggressive chelation, broadening indications for haematopoietic stem-cell transplantation, and recommending systematic clinical surveillance including early colorectal cancer screening. In summary, the current practice guidelines standardise the diagnostics, treatment, and long-term surveillance of patients with DBA syndrome of all ages worldwide.


Asunto(s)
Anemia de Diamond-Blackfan , Consenso , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/terapia , Anemia de Diamond-Blackfan/genética , Humanos , Manejo de la Enfermedad , Trasplante de Células Madre Hematopoyéticas
2.
Blood Adv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669341

RESUMEN

Severe aplastic anemia (SAA) is a rare hematologic condition for which there is no clear management algorithm. A panel of 11 adult and pediatric experts on aplastic anemia was assembled and, using the RAND/UCLA modified Delphi panel method, evaluated >600 varying patient care scenarios to develop clinical recommendations for the initial and subsequent management of patients of all ages with SAA. Here we present the panel's recommendations to rule out inherited bone marrow failure (IBMF) syndromes, on supportive care prior to and during first-line therapy, and on first-line (initial management) and second-line (subsequent management) therapy of acquired SAA, focusing on when transplant versus medical therapy is most appropriate. These recommendations represent the consensus of 11 experts informed by published literature and experience. They are intended only as general guidance for experienced clinicians who treat patients with SAA and are in no way intended to supersede individual physician and patient decision-making. Current and future research should validate this consensus using clinical data. Once validated, we hope these expert panel recommendations will improve outcomes for patients with SAA.

3.
Cancer Discov ; 14(3): 396-405, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426560

RESUMEN

SUMMARY: The recognition of host genetic factors underlying susceptibility to hematopoietic malignancies has increased greatly over the last decade. Historically, germline predisposition was thought to primarily affect the young. However, emerging data indicate that hematopoietic malignancies that develop in people of all ages across the human lifespan can derive from germline predisposing conditions and are not exclusively observed in younger individuals. The age at which hematopoietic malignancies manifest appears to correlate with distinct underlying biological pathways. Progression from having a deleterious germline variant to being diagnosed with overt malignancy involves complex, multistep gene-environment interactions with key external triggers, such as infection and inflammatory stimuli, driving clonal progression. Understanding the mechanisms by which predisposed clones transform under specific pressures may reveal strategies to better treat and even prevent hematopoietic malignancies from occurring.Recent unbiased genome-wide sequencing studies of children and adults with hematopoietic malignancies have revealed novel genes in which disease-causing variants are of germline origin. This paradigm shift is spearheaded by findings in myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) as well as acute lymphoblastic leukemia, but it also encompasses other cancer types. Although not without challenges, the field of genetic cancer predisposition is advancing quickly, and a better understanding of the genetic basis of hematopoietic malignancies risk affects therapeutic decisions as well as genetic counseling and testing of at-risk family members.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Adulto , Niño , Humanos , Síndromes Mielodisplásicos/genética , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Neoplasias Hematológicas/genética , Mutación de Línea Germinal , Leucemia Mieloide Aguda/genética
4.
Semin Hematol ; 61(1): 35-42, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38311515

RESUMEN

Clonal hematopoiesis in children and young adults differs from that occuring in the older adult population. A variety of stressors drive this phenomenon, sometimes independent of age-related processes. For the purposes of this review, we adopt the term clonal hematopoiesis in predisposed individuals (CHIPI) to differentiate it from classical, age-related clonal hematopoiesis of indeterminate potential (CHIP). Stress-induced CHIPI selection can be extrinsic, such as following immunologic, infectious, pharmacologic, or genotoxic exposures, or intrinsic, involving germline predisposition from inherited bone marrow failure syndromes. In these conditions, clonal advantage relates to adaptations allowing improved cell fitness despite intrinsic defects affecting proliferation and differentiation. In certain contexts, CHIPI can improve competitive fitness by compensating for germline defects; however, the downstream effects of clonal expansion are often unpredictable - they may either counteract the underlying pathology or worsen disease outcomes. A more complete understanding of how CHIPI arises in young people can lead to the definition of preleukemic states and strategies to assess risk, surveillance, and prevention to leukemic transformation. Our review summarizes current research on stress-induced clonal dynamics in individuals with germline predisposition syndromes.


Asunto(s)
Hematopoyesis Clonal , Hematopoyesis , Niño , Adulto Joven , Humanos , Adolescente , Anciano , Hematopoyesis/genética , Mutación
5.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37214874

RESUMEN

Human replication protein A (RPA) is a heterotrimeric ssDNA binding protein responsible for many aspects of cellular DNA metabolism. Dynamic interactions of the four RPA DNA binding domains (DBDs) with DNA control replacement of RPA by downstream proteins in various cellular metabolic pathways. RPA plays several important functions at telomeres where it binds to and melts telomeric G-quadruplexes, non-canonical DNA structures formed at the G-rich telomeric ssDNA overhangs. Here, we combine single-molecule total internal reflection fluorescence microscopy (smTIRFM) and mass photometry (MP) with biophysical and biochemical analyses to demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) specifically remodels RPA bound to telomeric ssDNA by dampening the RPA configurational dynamics and forming a ternary complex. Uniquely, among hnRNPA1 target RNAs, telomeric repeat-containing RNA (TERRA) is selectively capable of releasing hnRNPA1 from the RPA-telomeric DNA complex. We speculate that this telomere specific RPA-DNA-hnRNPA1 complex is an important structure in telomere protection. One Sentence Summary: At the single-stranded ends of human telomeres, the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) binds to and modulates conformational dynamics of the ssDNA binding protein RPA forming a ternary complex which is controlled by telomeric repeat-containing RNA (TERRA).

6.
Haematologica ; 109(2): 422-430, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584291

RESUMEN

Monosomy 7 is the most common cytogenetic abnormality in pediatric myelodysplastic syndrome (MDS) and associated with a high risk of disease progression. However, in young children, spontaneous loss of monosomy 7 with concomitant hematologic recovery has been described, especially in the presence of germline mutations in SAMD9 and SAMD9L genes. Here, we report on our experience of close surveillance instead of upfront hematopoietic stem cell transplantation (HSCT) in seven patients diagnosed with SAMD9L syndrome and monosomy 7 at a median age of 0.6 years (range, 0.4-2.9). Within 14 months from diagnosis, three children experienced spontaneous hematological remission accompanied by a decrease in monosomy 7 clone size. Subclones with somatic SAMD9L mutations in cis were identified in five patients, three of whom attained hematological remission. Two patients acquired RUNX1 and EZH2 mutations during the observation period, of whom one progressed to myelodysplastic syndrome with excess of blasts (MDS-EB). Four patients underwent allogeneic HSCT at a median time of 26 months (range, 14-40) from diagnosis for MDSEB, necrotizing granulomatous lymphadenitis, persistent monosomy 7, and severe neutropenia. At last follow-up, six patients were alive, while one passed away due to transplant-related causes. These data confirm previous observations that monosomy 7 can be transient in young children with SAMD9L syndrome. However, they also indicate that delaying HSCT poses a substantial risk of severe infection and disease progression. Finally, surveillance of patients with SAMD9L syndrome and monosomy 7 is critical to define the evolving genetic landscape and to determine the appropriate timing of HSCT (clinicaltrials gov. Identifier: NCT00662090).


Asunto(s)
Deleción Cromosómica , Síndromes Mielodisplásicos , Humanos , Niño , Preescolar , Lactante , Remisión Espontánea , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Progresión de la Enfermedad , Factores de Transcripción/genética , Monosomía , Cromosomas Humanos Par 7/genética , Péptidos y Proteínas de Señalización Intracelular/genética
7.
Br J Haematol ; 204(2): 595-605, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37945316

RESUMEN

Juvenile myelomonocytic leukaemia (JMML) is characterized by gene variants that deregulate the RAS signalling pathway. Children with neurofibromatosis type 1 (NF-1) carry a defective NF1 allele in the germline and are predisposed to JMML, which presumably requires somatic inactivation of the NF1 wild-type allele. Here we examined the two-hit concept in leukaemic cells of 25 patients with JMML and NF-1. Ten patients with JMML/NF-1 exhibited a NF1 loss-of-function variant in combination with uniparental disomy of the 17q arm. Five had NF1 microdeletions combined with a pathogenic NF1 variant and nine carried two compound-heterozygous NF1 variants. We also examined 16 patients without clinical signs of NF-1 and no variation in the JMML-associated driver genes PTPN11, KRAS, NRAS or CBL (JMML-5neg) and identified eight patients with NF1 variants. Three patients had microdeletions combined with hemizygous NF1 variants, three had compound-heterozygous NF1 variants and two had heterozygous NF1 variants. In addition, we found a high incidence of secondary ASXL1 and/or SETBP1 variants in both groups. We conclude that the clinical diagnosis of JMML/NF-1 reliably indicates a NF1-driven JMML subtype, and that careful NF1 analysis should be included in the genetic workup of JMML even in the absence of clinical evidence of NF-1.


Asunto(s)
Leucemia Mielomonocítica Juvenil , Neurofibromatosis 1 , Niño , Humanos , Leucemia Mielomonocítica Juvenil/genética , Neurofibromatosis 1/genética , Mutación , Transducción de Señal , Genes Supresores de Tumor
9.
Lancet Haematol ; 10(12): e994-e1005, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898151

RESUMEN

The recent application of whole exome or whole genome sequencing unveiled a plethora of germline variants predisposing to myeloid disorders, particularly myelodysplastic neoplasms. The presence of such variants in patients with myelodysplastic syndromes has important clinical repercussions for haematopoietic stem-cell transplantation, from donor selection and conditioning regimen to graft-versus-host disease prophylaxis and genetic counselling for relatives. No international guidelines exist to harmonise management approaches to this particular clinical scenario. Moreover, the application of germline testing, and how this informs clinical decisions, differs according to the expertise of individual clinical practices and according to different countries, health-care systems, and legislations. Leveraging the global span of the European Society for Blood and Marrow Transplantation (EBMT) network, we took a snapshot of the current European situation on these matters by disseminating an electronic survey to EBMT centres experienced in myelodysplastic syndromes transplantation. An international group of haematologists, transplantation physicians, paediatricians, nurses, and experts in molecular biology and constitutional genetics with experience in myelodysplastic syndromes contributed to this Position Paper. The panel met during multiple online meetings to discuss the results of the EBMT survey and to establish suggested harmonised guidelines for such clinical situations, which are presented here.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Síndromes Mielodisplásicos , Neoplasias , Humanos , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/métodos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Encuestas y Cuestionarios , Acondicionamiento Pretrasplante/métodos , Susceptibilidad a Enfermedades , Enfermedad Injerto contra Huésped/prevención & control
10.
Front Oncol ; 13: 1236038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37752993

RESUMEN

Diamond-Blackfan anemia (DBA) is one of the most common inherited causes of bone marrow failure in children. DBA typically presents with isolated erythroid hypoplasia and anemia in infants. Congenital anomalies are seen in 50% of the patients. Over time, many patients experience panhematopoietic defects resulting in immunodeficiency and multilineage hematopoietic cytopenias. Additionally, DBA is associated with increased risk of myelodysplastic syndrome, acute myeloid leukemia and solid organ cancers. As a prototypical ribosomopathy, DBA is caused by heterozygous loss-of-function mutations or deletions in over 20 ribosomal protein genes, with RPS19 being involved in 25% of patients. Corticosteroids are the only effective initial pharmacotherapy offered to transfusion-dependent patients aged 1 year or older. However, despite good initial response, only ~20-30% remain steroid-responsive while the majority of the remaining patients will require life-long red blood cell transfusions. Despite continuous chelation, iron overload and related toxicities pose a significant morbidity problem. Allogeneic hematopoietic cell transplantation (HCT) performed to completely replace the dysfunctional hematopoietic stem and progenitor cells is a curative option associated with potentially uncontrollable risks. Advances in HLA-typing, conditioning regimens, infection management, and graft-versus-host-disease prophylaxis have led to improved transplant outcomes in DBA patients, though survival is suboptimal for adolescents and adults with long transfusion-history and patients lacking well-matched donors. Additionally, many patients lack a suitable donor. To address this gap and to mitigate the risk of graft-versus-host disease, several groups are working towards developing autologous genetic therapies to provide another curative option for DBA patients across the whole age spectrum. In this review, we summarize the results of HCT studies and review advances and potential future directions in hematopoietic stem cell-based therapies for DBA.

12.
Cell ; 186(11): 2456-2474.e24, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37137305

RESUMEN

Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.


Asunto(s)
Edición Génica , Células Madre Hematopoyéticas , Humanos , Diferenciación Celular , Sistemas CRISPR-Cas , Genoma , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Ingeniería Genética , Análisis de la Célula Individual
14.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36413407

RESUMEN

Diamond-Blackfan anemia (DBA) is a genetic blood disease caused by heterozygous loss-of-function mutations in ribosomal protein (RP) genes, most commonly RPS19. The signature feature of DBA is hypoplastic anemia occurring in infants, although some older patients develop multilineage cytopenias with bone marrow hypocellularity. The mechanism of anemia in DBA is not fully understood and even less is known about the pancytopenia that occurs later in life, in part because patient hematopoietic stem and progenitor cells (HSPCs) are difficult to obtain, and the current experimental models are suboptimal. We modeled DBA by editing healthy human donor CD34+ HSPCs with CRISPR/Cas9 to create RPS19 haploinsufficiency. In vitro differentiation revealed normal myelopoiesis and impaired erythropoiesis, as observed in DBA. After transplantation into immunodeficient mice, bone marrow repopulation by RPS19+/- HSPCs was profoundly reduced, indicating hematopoietic stem cell (HSC) impairment. The erythroid and HSC defects resulting from RPS19 haploinsufficiency were partially corrected by transduction with an RPS19-expressing lentiviral vector or by Cas9 disruption of TP53. Our results define a tractable, biologically relevant experimental model of DBA based on genome editing of primary human HSPCs and they identify an associated HSC defect that emulates the pan-hematopoietic defect of DBA.


Asunto(s)
Anemia de Diamond-Blackfan , Humanos , Animales , Ratones , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Antígenos CD34/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Br J Haematol ; 199(4): 482-495, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35753998

RESUMEN

The importance of predisposition to leukaemia in clinical practice is being increasingly recognized. This is emphasized by the establishment of a novel WHO disease category in 2016 called "myeloid neoplasms with germline predisposition". A major syndrome within this group is GATA2 deficiency, a heterogeneous immunodeficiency syndrome with a very high lifetime risk to develop myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). GATA2 deficiency has been identified as the most common hereditary cause of MDS in adolescents with monosomy 7. Allogenic haematopoietic stem cell transplantation is the only curative option; however, chances of survival decrease with progression of immunodeficiency and MDS evolution. Penetrance and expressivity within families carrying GATA2 mutations is often variable, suggesting that co-operating extrinsic events are required to trigger the disease. Predictive tools are lacking, and intrafamilial heterogeneity is poorly understood; hence there is a clear unmet medical need. On behalf of the ERAPerMed GATA2 HuMo consortium, in this review we describe the genetic, clinical, and biological aspects of familial GATA2-related MDS, highlighting the importance of developing robust disease preclinical models to improve early detection and clinical decision-making of GATA2 carriers.


Asunto(s)
Deficiencia GATA2 , Trasplante de Células Madre Hematopoyéticas , Síndromes de Inmunodeficiencia , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , Susceptibilidad a Enfermedades , Deficiencia GATA2/genética , Deficiencia GATA2/terapia , Factor de Transcripción GATA2/genética , Síndromes de Inmunodeficiencia/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Trastornos Mieloproliferativos/complicaciones
18.
Blood Adv ; 6(12): 3803-3811, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35500223

RESUMEN

Fanconi anemia (FA), a genetic DNA repair disorder characterized by marrow failure and cancer susceptibility. In FA mice, metformin improves blood counts and delays tumor development. We conducted a single institution study of metformin in nondiabetic patients with FA to determine feasibility and tolerability of metformin treatment and to assess for improvement in blood counts. Fourteen of 15 patients with at least 1 cytopenia (hemoglobin < 10 g/dL; platelet count < 100 000 cells/µL; or an absolute neutrophil count < 1000 cells/µL) were eligible to receive metformin for 6 months. Median patient age was 9.4 years (range 6.0-26.5 ). Thirteen of 14 subjects (93%) tolerated maximal dosing for age; 1 subject had dose reduction for grade 2 gastrointestinal symptoms. No subjects developed hypoglycemia or metabolic acidosis. No subjects had dose interruptions caused by toxicity, and no grade 3 or higher adverse events attributed to metformin were observed. Hematologic response based on modified Myelodysplastic Syndrome International Working Group criteria was observed in 4 of 13 evaluable patients (30.8%; 90% confidence interval, 11.3-57.3). Median time to response was 84.5 days (range 71-128 days). Responses were noted in neutrophils (n = 3), platelets (n = 1), and red blood cells (n = 1). No subjects met criteria for disease progression or relapse during treatment. Correlative studies explored potential mechanisms of metformin activity in FA. Plasma proteomics showed reduction in inflammatory pathways with metformin. Metformin is safe and tolerable in nondiabetic patients with FA and may provide therapeutic benefit. This trial was registered at as #NCT03398824.


Asunto(s)
Anemia de Fanconi , Metformina , Niño , Anemia de Fanconi/tratamiento farmacológico , Anemia de Fanconi/genética , Humanos , Metformina/uso terapéutico , Adulto Joven
20.
Blood Adv ; 6(2): 521-527, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34710216

RESUMEN

Secondary myelodysplastic syndromes and acute myeloid leukemia (sMDS/AML) are rare in children and adolescents and have a dismal prognosis. The mainstay therapy is hematopoietic cell transplantation (HCT), but there has been no innovation in cytoreductive regimens. CP X-351, a fixed 5:1 molar ratio of liposomal cytarabine to daunorubicin, has shown favorable safety and efficacy in elderly individuals with secondary AML and children with relapsed de novo AML. We report the outcomes of 7 young patients (6 with newly diagnosed sMDS/AML and 1 with primary MDS/AML) uniformly treated with CP X-351. Five patients had previously received chemotherapy for osteosarcoma, Ewing sarcoma, neuroblastoma, or T-cell acute lymphoblastic leukemia; 1 had predisposing genomic instability disorder (Cornelia de Lange syndrome) and 1 had MDS-related AML and multiorgan failure. The median age at diagnosis of myeloid malignancy was 17 years (range, 13-23 years). Patients received 1 to 3 cycles of CP X-351 (cytarabine 100 mg/m2 plus daunorubicin 44 mg/m2) on days 1, 3, and 5, resulting in complete morphologic remission without overt toxicity or treatment-related mortality. This approach allowed for adding an FLT3 inhibitor as individualized therapy in 1 patient. Six patients were alive and leukemia-free at 0.5 to 3.3 years after HCT. One patient died as a result of disease progression before HCT. To summarize, CP X-351 is an effective and well-tolerated regimen for cytoreduction in pediatric sMDS/AML that warrants prospective studies.


Asunto(s)
Leucemia Mieloide Aguda , Neoplasias Primarias Secundarias , Adolescente , Anciano , Niño , Citarabina/uso terapéutico , Daunorrubicina/uso terapéutico , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Neoplasias Primarias Secundarias/tratamiento farmacológico , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...