Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 22(3): 926-934, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35050639

RESUMEN

Microtubules gliding on motor-functionalized surfaces have been explored for various nanotechnological applications. However, when moving over large distances (several millimeters) and long times (tens of minutes), microtubules are lost due to surface detachment. Here, we demonstrate the multiplication of kinesin-1-driven microtubules that comprises two concurrent processes: (i) severing of microtubules by the enzyme spastin and (ii) elongation of microtubules by self-assembly of tubulin dimers at the microtubule ends. We managed to balance the individual processes such that the average length of the microtubules stayed roughly constant over time while their number increased. Moreover, we show microtubule multiplication in physical networks with topographical channel structures. Our method is expected to broaden the toolbox for microtubule-based in vitro applications by counteracting the microtubule loss from substrate surfaces. Among others, this will enable upscaling of network-based biocomputation, where it is vital to increase the number of microtubules during operation.


Asunto(s)
Microtúbulos , Nanotecnología , Cinesinas/metabolismo , Microtúbulos/metabolismo , Espastina/metabolismo , Tubulina (Proteína)/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(31): 11359-64, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049381

RESUMEN

Intermediate filaments (IFs) are key to the mechanical strength of metazoan cells. Their basic building blocks are dimeric coiled coils mediating hierarchical assembly of the full-length filaments. Here we use single-molecule force spectroscopy by optical tweezers to assess the folding and stability of coil 2B of the model IF protein vimentin. The coiled coil was unzipped from its N and C termini. When pulling from the C terminus, we observed that the coiled coil was resistant to force owing to the high stability of the C-terminal region. Pulling from the N terminus revealed that the N-terminal half is considerably less stable. The mechanical pulling assay is a unique tool to study and control seed formation and structure propagation of the coiled coil. We then used rigorous theory-based deconvolution for a model-free extraction of the energy landscape and local stability profiles. The data obtained from the two distinct pulling directions complement each other and reveal a tripartite stability of the coiled coil: a labile N-terminal half, followed by a medium stability section and a highly stable region at the far C-terminal end. The different stability regions provide important insight into the mechanics of IF assembly.


Asunto(s)
Filamentos Intermedios/química , Estrés Mecánico , Vimentina/química , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Secundaria de Proteína , Termodinámica , Vimentina/metabolismo
3.
Neurology ; 82(22): 2007-16, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24808017

RESUMEN

OBJECTIVE: To identify a novel disease gene in 2 families with autosomal recessive hereditary spastic paraplegia (HSP). METHODS: We used whole-exome sequencing to identify the underlying genetic disease cause in 2 families with apparently autosomal recessive spastic paraplegia. Endogenous expression as well as subcellular localization of wild-type and mutant protein were studied to support the pathogenicity of the identified mutations. RESULTS: In 2 families, we identified compound heterozygous or homozygous mutations in the kinesin gene KIF1C to cause hereditary spastic paraplegia type 58 (SPG58). SPG58 can be complicated by cervical dystonia and cerebellar ataxia. The same mutations in a heterozygous state result in a mild or subclinical phenotype. KIF1C mutations in SPG58 affect the domains involved in adenosine triphosphate hydrolysis and microtubule binding, key functions for this microtubule-based motor protein. CONCLUSIONS: KIF1C is the third kinesin gene involved in the pathogenesis of HSPs and is characterized by a mild dominant and a more severe recessive disease phenotype. The identification of KIF1C as an HSP disease gene further supports the key role of intracellular trafficking processes in the pathogenesis of hereditary axonopathies.


Asunto(s)
Cinesinas/genética , Mutación/genética , Paraplejía Espástica Hereditaria/genética , Adulto , Movimiento Celular/genética , Femenino , Alemania , Heterocigoto , Homocigoto , Humanos , Espacio Intracelular/genética , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Índice de Severidad de la Enfermedad
4.
PLoS One ; 8(7): e67815, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23869207

RESUMEN

AAA ATPases form a functionally diverse superfamily of proteins. Most members form homo-hexameric ring complexes, are catalytically active only in the fully assembled state, and show co-operativity among the six subunits. The mutual dependence among the subunits is clearly evidenced by the fact that incorporation of mutated, inactive subunits can decrease the activity of the remaining wild type subunits. For the first time, we develop here models to describe this form of allostery, evaluate them in a simulation study, and test them on experimental data. We show that it is important to consider the assembly reactions in the kinetic model, and to define a formal inhibition scheme. We simulate three inhibition scenarios explicitly, and demonstrate that they result in differing outcomes. Finally, we deduce fitting formulas, and test them on real and simulated data. A non-competitive inhibition formula fitted experimental and simulated data best. To our knowledge, our study is the first one that derives and tests formal allosteric schemes to explain the inhibitory effects of mutant subunits on oligomeric enzymes.


Asunto(s)
Adenosina Trifosfatasas/química , Simulación por Computador , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Cinética , Método de Montecarlo , Mutación , Subunidades de Proteína/química
5.
PLoS One ; 7(12): e50161, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23272056

RESUMEN

Spastin and katanin are ring-shaped hexameric AAA ATPases that sever microtubules, and thus crucially depend on a physical interaction with microtubules. For the first time, we report here the microtubule binding properties of spastin at the single-molecule level, and compare them to katanin. Microscopic fluorescence assays showed that human spastin bound to microtubules by ionic interactions, and diffused along microtubules with a diffusion coefficient comparable to katanin. The microscopic measurement of landing and dissociation rates demonstrated the ionic character of the interaction, which could be mapped to a patch of three lysine residues outside of the catalytic domain of human spastin. This motif is not conserved in Drosophila spastin or katanin, which also bound by non-catalytic parts of the protein. The binding affinities of spastin and katanin were nucleotide-sensitive, with the lowest affinities under ADP,, the highest under ATP-γS conditions. These changes correlated with the formation of higher oligomeric states, as shown in biochemical experiments and electron microscopic images. Vice versa, the artificial dimerization of human spastin by addition of a coiled coil led to a constitutively active enzyme. These observations suggest that dimer formation is a crucial step in the formation of the active complex, and thus the severing process by spastin.


Asunto(s)
Adenosina Trifosfatasas/química , Microtúbulos/química , Adenosina Difosfato/química , Animales , Dominio Catalítico , Difusión , Drosophila , Proteínas de Drosophila/química , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Iones , Katanina , Lisina/química , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Nucleótidos/química , Nucleótidos/genética , Unión Proteica , Estructura Terciaria de Proteína , Espastina , Porcinos
6.
J Biol Chem ; 287(31): 26278-90, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22637577

RESUMEN

Spastin is a hexameric ring AAA ATPase that severs microtubules. To see whether the ring complex funnels the energy of multiple ATP hydrolysis events to the site of mechanical action, we investigate here the cooperativity of spastin. Several lines of evidence indicate that interactions among two subunits dominate the cooperative behavior: (i) the ATPase activity shows a sigmoidal dependence on the ATP concentration; (ii) ATPγS displays a mixed-inhibition behavior for normal ATP turnover; and (iii) inactive mutant subunits inhibit the activity of spastin in a hyperbolic dependence, characteristic for two interacting species. A quantitative model based on neighbor interactions fits mutant titration experiments well, suggesting that each subunit is mainly influenced by one of its neighbors. These observations are relevant for patients suffering from SPG4-type hereditary spastic paraplegia and explain why single amino acid exchanges lead to a dominant negative phenotype. In severing assays, wild type spastin is even more sensitive toward the presence of inactive mutants than in enzymatic assays, suggesting a weak coupling of ATPase and severing activity.


Asunto(s)
Adenosina Trifosfatasas/química , Subunidades de Proteína/química , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Algoritmos , Animales , Pruebas de Enzimas , Humanos , Hidrólisis , Cinética , Microtúbulos/química , Mutación Missense , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Eliminación de Secuencia , Espastina , Porcinos , Imagen de Lapso de Tiempo
7.
Biophys J ; 97(1): 173-82, 2009 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-19580755

RESUMEN

Kinesin-1 motor proteins move along microtubules in repetitive steps of 8 nm at the expense of ATP. To determine nucleotide dwell times during these processive runs, we used a Förster resonance energy transfer method at the single-molecule level that detects nucleotide binding to kinesin motor heads. We show that the fluorescent ATP analog used produces processive motility with kinetic parameters altered <2.5-fold compared with normal ATP. Using our confocal fluorescence kinesin motility assay, we obtained fluorescence intensity time traces that we then analyzed using autocorrelation techniques, yielding a time resolution of approximately 1 ms for the intensity fluctuations due to fluorescent nucleotide binding and release. To compare these experimental autocorrelation curves with kinetic models, we used Monte-Carlo simulations. We find that the experimental data can only be described satisfactorily on the basis of models assuming an alternating-site mechanism, thus supporting the view that kinesin's two motor domains hydrolyze ATP and step in a sequential way.


Asunto(s)
Adenosina Trifosfato/química , Cinesinas/química , Nucleótidos/química , Adenosina Trifosfato/análogos & derivados , Simulación por Computador , AMP Cíclico/análogos & derivados , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Microscopía Confocal , Microscopía Fluorescente , Modelos Químicos , Método de Montecarlo , Movimiento (Física) , Factores de Tiempo
8.
FEBS J ; 276(13): 3641-55, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19490122

RESUMEN

Members of the Kinesin-3 family are microtubule motors involved in the transport of membranous cargo. NcKin3 from the fungus Neurospora crassa is dimeric but inactivates one of its motor heads to generate nonprocessive motility. To determine how one of the heads is inactivated, we investigated truncated monomeric constructs. None of the constructs generated processive single-molecule motility, and multimotor velocities depended linearly on the number of residues remaining in the neck. The kinetic analysis suggests futile ATP hydrolysis cycles, because a representative monomer showed a faster ATP turnover than the dimer while supporting slower motility. The K(0.5,MT) was 70-fold lower, the microtubule-bound portion of the kinetic cycle eight-fold longer and the microtubule detachment rate almost 15-fold slower than that of the dimer. Moreover, the monomer's microtubule-dependent ADP release occurred three-fold to four-fold faster than k(cat) (125 versus 34 s(-1)), whereas phosphate release was approximately equally fast (29 s(-1)). A dimeric construct containing a structure-breaking insert between motor head and neck showed a similar behaviour. These data suggest that the heads of the wild-type NcKin3 motor are strictly coupled via the neck domain, and that the dimeric structure is required for proper detachment after one ATPase cycle. This is the first direct comparison of a monomeric Kinesin-3 with its dimeric full-length counterpart, and the kinetic changes observed here may also apply to other Kinesin-3 motors.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Dimerización , Activación Enzimática , Proteínas Fúngicas/genética , Isoenzimas/genética , Cinesinas/genética , Microtúbulos/química , Microtúbulos/metabolismo , Neurospora crassa/química , Neurospora crassa/enzimología , Estructura Cuaternaria de Proteína , Porcinos
9.
Proc Natl Acad Sci U S A ; 106(17): 6992-7, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19369199

RESUMEN

Structural integrity as well as mechanical stability of the parts of a molecular motor are crucial for its function. In this study, we used high-resolution force spectroscopy by atomic force microscopy to investigate the force-dependent opening kinetics of the neck coiled coil of Kinesin-1 from Drosophila melanogaster. We find that even though the overall thermodynamic stability of the neck is low, the average opening force of the coiled coil is >11 pN when stretched with pulling velocities >150 nm/s. These high unzipping forces ensure structural integrity during motor motion. The high mechanical stability is achieved through a very narrow N-terminal unfolding barrier if compared with a conventional leucine zipper. The experimentally mapped mechanical unzipping profile allows direct assignment of distinct mechanical stabilities to the different coiled-coil subunits. The coiled-coil sequence seems to be tuned in an optimal way to ensure both mechanical stability as well as motor regulation through charged residues.


Asunto(s)
Cinesinas/química , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
10.
PLoS One ; 4(2): e4612, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19242550

RESUMEN

The protein family of kinesins contains processive motor proteins that move stepwise along microtubules. This mechanism requires the precise coupling of the catalytic steps in the two heads, and their precise mechanical coordination. Here we show that these functionalities can be uncoupled in chimera of processive and non-processive kinesins. A chimera with the motor domain of Kinesin-1 and the dimerization domain of a non-processive Kinesin-3 motor behaves qualitatively as conventional kinesin and moves processively in TIRF and bead motility assays, suggesting that spatial proximity of two Kinein-1 motor domains is sufficient for processive behavior. In the reverse chimera, the non-processive motor domains are unable to step along microtubules, despite the presence of the Kinesin-1 neck coiled coil. Still, ATP-binding to one head of these chimera induces ADP-release from the partner head, a characteristic feature of alternating site catalysis. These results show that processive movement of kinesin dimers requires elements in the motor head that respond to ADP-release and induce stepping, in addition to a proper spacing of the motor heads via the neck coiled coil.


Asunto(s)
Cinesinas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Humanos , Movimiento (Física) , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión , Porcinos
11.
Phys Biol ; 5(4): 046004, 2008 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19029597

RESUMEN

Molecular motors often work collectively inside the cell. While the properties of individual motors have been extensively studied over the last decade, much less is known on how motors coordinate their action when working in ensembles. The motor collective behaviour in conditions where they contact each other, as in intracellular transport, may strongly depend on their mutual interactions. In particular, mutual interactions may result in motor clustering without the need of additional proteins. Here we study the interactions between kinesin-1 molecules by analysing their attachment/detachment kinetics on microtubules in the absence of motor motion. Our in vitro experiments show that kinesins-1 remain longer attached to the microtubule in the presence of neighbouring motors, resulting in the formation of motor clusters. Numerical simulations of the motor attachment/detachment dynamics show that the presence of attractive interactions between motors quantitatively accounts for the experimental observations. From the comparison of the numerical results and the experimental data we estimate the interaction energy between kinesin-1 molecules to be 1.6 +/- 0.5K(B)T. The existence of attractive interactions between kinesins-1 provides a new insight into the coordination mechanism between motor proteins and may be crucial to understand the large scale traffic in cells.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Transporte Biológico , Difusión , Cinética , Modelos Moleculares , Análisis Numérico Asistido por Computador
12.
Hum Mol Genet ; 17(9): 1245-52, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18203753

RESUMEN

Hereditary spastic paraplegia (HSP) is a neurodegenerative disease caused by motoneuron degeneration. It is linked to at least 30 loci, among them SPG10, which causes dominant forms and originates in point mutations in the neuronal Kinesin-1 gene (KIF5A). Here, we investigate the motility of KIF5A and four HSP mutants. All mutations are single amino-acid exchanges and located in kinesin's motor or neck domain. The mutation in the neck (A361V) did not change the gliding properties in vitro, the others either reduced microtubule affinity or gliding velocity or both. In laser-trapping assays, none of the mutants moved more than a few steps along microtubules. Motility assays with mixtures of homodimeric wild-type, homodimeric mutant and heterodimeric wild-type/mutant motors revealed that only one mutant (N256S) reduces the gliding velocity at ratios present in heterozygous patients, whereas the others (K253N, R280C) do not. Attached to quantum dots as artificial cargo, mixtures involving N256S mutants produced slower cargo populations lagging behind in transport, whereas mixtures with the other mutants led to populations of quantum dots that rarely bound to microtubules. These differences indicate that the dominant inheritance of SPG10 is caused by two different mechanisms that both reduce the gross cargo flux, leading to deficient supply of the synapse.


Asunto(s)
Cinesinas/genética , Mutación Puntual , Paraplejía Espástica Hereditaria/genética , Secuencia de Aminoácidos , Animales , Transporte Biológico , Movimiento Celular , Genes Dominantes , Heterocigoto , Humanos , Cinesinas/química , Cinesinas/aislamiento & purificación , Cinesinas/metabolismo , Microtúbulos/fisiología , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/aislamiento & purificación , Proteínas Motoras Moleculares/metabolismo , Mutación Missense , Estructura Terciaria de Proteína , Puntos Cuánticos , Porcinos
13.
Biochemistry ; 47(7): 1848-61, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18205396

RESUMEN

Neurospora crassa kinesin NcKin3 belongs to a unique fungal-specific subgroup of small Kinesin-3-related motor proteins. One of its functions appears to be the transport of mitochondria along microtubules. Here, we present the X-ray structure of a C-terminally truncated monomeric construct of NcKin3 comprising the motor domain and the neck linker, and a 3-D image reconstruction of this motor domain bound to microtubules, by cryoelectron microscopy. The protein contains Mg.ADP bound to the active site, yet the structure resembles an ATP-bound state. By comparison with structures of the Kinesin-3 motor Kif1A in different nucleotide states (Kikkawa, M. et al. (2001) Nature (London, U.K.) 411, 439-445), the NcKin3 structure corresponds to the AMPPCP complex of Kif1A rather than the AMPPNP complex. NcKin3-specific differences in the coordination of the nucleotide and asymmetric interactions between adjacent molecules in the crystal are discussed in the context of the unusual kinetics of the dimeric wild-type motor and the monomeric construct used for crystal structure analysis. The NcKin3 motor decorates microtubules at a stoichiometry of one head per alphabeta-tubulin heterodimer, thereby forming an axial periodicity of 8 nm. In spite of unusual extensions at the N-terminus and within flexible loops L2, L8a, and L12 (corresponding to the K-loop of monomeric kinesins), the microtubule binding geometry is similar to that of other members of the kinesin family.


Asunto(s)
Proteínas Fúngicas/química , Microtúbulos/química , Proteínas Motoras Moleculares/química , Neurospora crassa/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
14.
Eur J Cell Biol ; 87(4): 237-49, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18160177

RESUMEN

The amoeba Dictyostelium discoideum possesses genes for 13 different kinesins. Here we characterize DdKif3, a member of the Kinesin-1 family. Kinesin-1 motors form homodimers that can move micrometer-long distances on microtubules using the energy derived from ATP hydrolysis. We expressed recombinant motors in Escherichia coli and tested them in different in vitro assays. Full-length and truncated Kif3 motors were active in gliding and ATPase assays. They showed a strong dependence on ionic strength. Like the full-length motor, the truncated DdKif3-592 motor (aa 1-592; comprising motor domain, neck, and partial stalk) reached its maximum speed of around 2.0micrcom s(-1) at a potassium acetate concentration of 200mM. The shortened DdKif3-342 motor (aa 1-342; comprising motor domain, partial neck) showed a high ATP turnover, comparable to that of the fungal Kinesin-1, Nkin. Results from the duty cycle calculations and gliding assays indicate that DdKif3 is a processive motor. A GFP-fusion protein revealed a mainly cytoplasmic localization of DdKif3. Immunofluorescence staining makes an association with the endoplasmic reticulum or mitochondria unlikely. Despite a similar phylogenetic distance to both metazoa and fungi, in terms of its biochemical properties DdKif3 revealed a closer similarity to fungal than animal kinesins.


Asunto(s)
Dictyostelium/metabolismo , Cinesinas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Proteínas Protozoarias/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Dictyostelium/genética , Escherichia coli , Cinesinas/química , Cinesinas/genética , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
15.
EMBO Rep ; 8(11): 976, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17972892
16.
Cell ; 128(6): 1033-4, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17382876

RESUMEN

The yeast kinesin motor protein Kar3 forms a heterodimer with a nonmotor protein Vik1. A study in this issue by Allingham et al. (2007) reveals that Vik1 unexpectedly has a structure similar to a kinesin motor domain yet lacks a nucleotide-binding site and is thus catalytically inactive. However, this does not hinder movement of the heterodimer because other features of the remarkably divergent Vik1 motor domain are retained, including the ability to bind microtubules.


Asunto(s)
Proteínas Fúngicas/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Proteínas Fúngicas/química , Cinesinas/química , Proteínas Asociadas a Microtúbulos/química , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
17.
J Biol Chem ; 281(49): 37782-93, 2006 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-17012747

RESUMEN

Kinesin-3 motors have been shown to transport cellular cargo along microtubules and to function according to mechanisms that differ from the conventional hand-over-hand mechanism. To find out whether the mechanisms described for Kif1A and CeUnc104 cover the full spectrum of Kinesin-3 motors, we characterize here NcKin3, a novel member of the Kinesin-3 family that localizes to mitochondria of ascomycetes. We show that NcKin3 does not move in a K-loop-dependent way as Kif1A or in a cluster-dependent way as CeUnc104. Its in vitro gliding velocity ranges between 0.30 and 0.64 mum/s and correlates positively with motor density. The processivity index (k(bi,ratio)) of approximately 3 reveals that not more than three ATP molecules are hydrolyzed per productive microtubule encounter. The NcKin3 duty ratio of 0.03 indicates that the motor spends only a minute fraction of the ATPase cycle attached to the filament. Unlike other Kinesin-3 family members, NcKin3 forms stable dimers, but only one subunit releases ADP in a microtubule-dependent fashion. Together, these data exclude a processive hand-over-hand mechanism of movement and suggest a power-stroke mechanism where nucleotide-dependent structural changes in a single motor domain lead to displacement of the motor along the filament. Thus, NcKin3 is the first plus end-directed kinesin motor that is dimeric but moves in a nonprocessive fashion to its destination.


Asunto(s)
Proteínas Fúngicas/metabolismo , Cinesinas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Dimerización , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cinesinas/química , Cinesinas/genética , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Datos de Secuencia Molecular , Neurospora crassa/genética , Neurospora crassa/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
18.
Biophys J ; 91(4): 1407-12, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16714343

RESUMEN

Kinesin-1 is a dimeric motor protein that moves stepwise along microtubules. A two-stranded alpha-helical coiled-coil formed by the neck domain links the two heads of the molecule, and forces the motor heads to alternate. By exchanging the particularly soft neck region of the conventional kinesin from the fungus Neurospora crassa with an artificial, highly stable coiled-coil we investigated how this domain affects motor kinetics and motility. Under unloaded standard conditions, both motor constructs developed the same gliding velocity. However, in a force-feedback laser trap the mutant showed increasing motility defects with increasing loads, and did not reach wild-type velocities and run lengths. The stall force dropped significantly from 4.1 to 3.0 pN. These results indicate the compliance of kinesin's neck is important to sustain motility under load, and reveal a so far unknown constrain on the imperfect coiled-coil heptad pattern of Kinesin-1. We conclude that coiled-coil structures, a motif encountered in various types of molecular motors, are not merely a clamp for linking two heavy chains to a functional unit but may have specifically evolved to allow motor progression in a viscous, inhomogeneous environment or when several motors attached to a transported vesicle are required to cooperate efficiently.


Asunto(s)
Cinesinas/química , Proteínas Motoras Moleculares/química , Neurospora crassa/metabolismo , Sustitución de Aminoácidos , Elasticidad , Cinesinas/análisis , Movimiento (Física) , Mutagénesis Sitio-Dirigida , Neurospora crassa/genética , Estructura Terciaria de Proteína , Estrés Mecánico , Relación Estructura-Actividad , Soporte de Peso
19.
Mol Biol Cell ; 17(6): 2811-23, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16554367

RESUMEN

Microtubules are important for the turnover of podosomes, dynamic, actin-rich adhesions implicated in migration and invasion of monocytic cells. The molecular basis for this functional dependency, however, remained unclear. Here, we show that contact by microtubule plus ends critically influences the cellular fate of podosomes in primary human macrophages. In particular, we identify the kinesin KIF1C, a member of the Kinesin-3 family, as a plus-end-enriched motor that targets regions of podosome turnover. Expression of mutation constructs or small interfering RNA-/short hairpin RNA-based depletion of KIF1C resulted in decreased podosome dynamics and ultimately in podosome deficiency. Importantly, protein interaction studies showed that KIF1C binds to nonmuscle myosin IIA via its PTPD-binding domain, thus providing an interface between the actin and tubulin cytoskeletons, which may facilitate the subcellular targeting of podosomes by microtubules. This is the first report to implicate a kinesin in podosome regulation and also the first to describe a function for KIF1C in human cells.


Asunto(s)
Estructuras de la Membrana Celular/fisiología , Cinesinas/fisiología , Macrófagos/fisiología , Microtúbulos/fisiología , Diferenciación Celular , Estructuras de la Membrana Celular/ultraestructura , Células Cultivadas , Clonación Molecular , Escherichia coli , Humanos , Cinesinas/deficiencia , Cinesinas/genética , Macrófagos/citología , Microinyecciones , Mutagénesis , Plásmidos , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
20.
J Muscle Res Cell Motil ; 27(2): 153-60, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16450053

RESUMEN

Kinesin-1 microtubule motors are common kinesin motors from protozoa, fungi and animals. They transport vesicular or particle cargo in a strictly regulated manner. The relatively well-studied tail inhibition mechanism is based on a conformational change that leads to an interaction of Kinesin-1's tail with the junction of neck and hinge regions. This folding causes a decrease in microtubule binding and motor activity. In fungal Kinesin-1 motors several lines of evidence suggest that a conserved tyrosine in the neck coiled-coil mediates this inhibition. In the active state, a region surrounding a conserved tryptophan in the hinge stabilises the neck coiled-coil, and prevents the tyrosine from inhibiting. Although animal and fungal Kinesin-1 motors are clearly homologous and function according to the same chemo-mechanical mechanism, they differ in their regulation. Unlike fungal Kinesin-1s, animal kinesins associate with light chains that are important for regulation and cargo interaction. Several proteins interacting with animal Kinesin-1 heavy or light chains are known, among them typical scaffolding proteins that seem to link Kinesin-1 to signalling pathways.


Asunto(s)
Movimiento Celular/fisiología , Cinesinas/metabolismo , Microtúbulos/metabolismo , Transducción de Señal/fisiología , Animales , Hongos/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...