Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(12): 105412, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918805

RESUMEN

A major unsolved question in vertebrate photoreceptor biology is the mechanism of rhodopsin transport to the outer segment. In rhodopsin-like class A G protein-coupled receptors, hydrophobic interactions between C-terminal α-helix 8 (H8), and transmembrane α-helix-1 (TM1) have been shown to be important for transport to the plasma membrane, however whether this interaction is important for rhodopsin transport to ciliary rod outer segments is not known. We examined the crystal structures of vertebrate rhodopsins and class A G protein-coupled receptors and found a conserved network of predicted hydrophobic interactions. In Xenopus rhodopsin (xRho), this interaction corresponds to F313, L317, and L321 in H8 and M57, V61, and L68 in TM1. To evaluate the role of H8-TM1 hydrophobic interactions in rhodopsin transport, we expressed xRho-EGFP where hydrophobic residues were mutated in Xenopus rods and evaluated the efficiency of outer segment enrichment. We found that substituting L317 and M57 with hydrophilic residues had the strongest impact on xRho mislocalization. Substituting hydrophilic amino acids at positions L68, F313, and L321 also had a significant impact. Replacing L317 with M resulted in significant mislocalization, indicating that the hydrophobic interaction between residues 317 and 57 is exquisitely sensitive. The corresponding experiment in bovine rhodopsin expressed in HEK293 cells had a similar effect, showing that the H8-TM1 hydrophobic network is essential for rhodopsin transport in mammalian species. Thus, for the first time, we show that a hydrophobic interaction between H8 and TM1 is critical for efficient rhodopsin transport to the vertebrate photoreceptor ciliary outer segment.


Asunto(s)
Células Fotorreceptoras Retinianas Bastones , Rodopsina , Animales , Bovinos , Humanos , Células HEK293 , Interacciones Hidrofóbicas e Hidrofílicas , Receptores Acoplados a Proteínas G/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Rodopsina/genética , Rodopsina/química , Segmento Externo de la Célula en Bastón/metabolismo , Vertebrados
2.
Neurobiol Dis ; 168: 105689, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35288304

RESUMEN

Disruption of Interleukin-1ß (IL-1ß) signaling sensitized mice to convulsant stimuli, suggesting that this quintessential cytokine of the innate immune system contributes to maintenance of the innate seizure threshold (ST). However, much remains unknown about where and how IL-1ß secretion occurs in the normal brain. This study examined the possibility that neurons of the hippocampus are key sources of constitutive IL-1ß secretion and that the release from these cells is dependent on the purinoceptor, P2X7. It was posited that treatment with the P2X7 antagonist, JNJ-47965567 (JNJ), would cause IL-1ß to accumulate in cells that produce it, and consequently, lower the ST. No IL-1ß immunoreactivity was detected in any region of the hippocampal formation of mice treated with the JNJ vehicle, Sulfobutylether-ß-cyclodextrin. In contrast, prominent immunoreactivity was discovered in the pyramidal neurons of the CA3 region 60 min after treatment with the P2X7 antagonist. Lower levels were found in CA1 neurons, and no immunoreactivity was detected in granule cells of the dentate gyrus. JNJ also increased IL-1ß immunoreactivity in the cell bodies of hippocampal neurons in culture. Interestingly, JNJ potentiated bicuculline-induced Fos and COX-2 mRNA expression in the cultures and this was blocked by an NMDA receptor antagonist. Moreover, pentylenetetrazole-induced seizure severity and incidence of convulsions were increased in mice treated with JNJ and this resembled that observed with IL-1 signaling-deficient mice. Overall, the results from this study support the notion that constitutive P2X7-dependent IL-1ß release from hippocampal pyramidal neurons contributes to maintenance of the ST in the normal brain, perhaps by modulating neuronal excitability. These findings may have implications for epilepsy, a brain disorder in which the ST is compromised.


Asunto(s)
Células Piramidales , Convulsiones , Animales , Encéfalo/metabolismo , Hipocampo/metabolismo , Interleucina-1beta , Ratones , Células Piramidales/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...