Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38768397

RESUMEN

The integration of multiomics data with detailed phenotypic insights from electronic health records marks a paradigm shift in biomedical research, offering unparalleled holistic views into health and disease pathways. This review delineates the current landscape of multimodal omics data integration, emphasizing its transformative potential in generating a comprehensive understanding of complex biological systems. We explore robust methodologies for data integration, ranging from concatenation-based to transformation-based and network-based strategies, designed to harness the intricate nuances of diverse data types. Our discussion extends from incorporating large-scale population biobanks to dissecting high-dimensional omics layers at the single-cell level. The review underscores the emerging role of large language models in artificial intelligence, anticipating their influence as a near-future pivot in data integration approaches. Highlighting both achievements and hurdles, we advocate for a concerted effort toward sophisticated integration models, fortifying the foundation for groundbreaking discoveries in precision medicine.

2.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38527901

RESUMEN

MOTIVATION: Many diseases, particularly cardiometabolic disorders, exhibit complex multimorbidities with one another. An intuitive way to model the connections between phenotypes is with a disease-disease network (DDN), where nodes represent diseases and edges represent associations, such as shared single-nucleotide polymorphisms (SNPs), between pairs of diseases. To gain further genetic understanding of molecular contributors to disease associations, we propose a novel version of the shared-SNP DDN (ssDDN), denoted as ssDDN+, which includes connections between diseases derived from genetic correlations with intermediate endophenotypes. We hypothesize that a ssDDN+ can provide complementary information to the disease connections in a ssDDN, yielding insight into the role of clinical laboratory measurements in disease interactions. RESULTS: Using PheWAS summary statistics from the UK Biobank, we constructed a ssDDN+ revealing hundreds of genetic correlations between diseases and quantitative traits. Our augmented network uncovers genetic associations across different disease categories, connects relevant cardiometabolic diseases, and highlights specific biomarkers that are associated with cross-phenotype associations. Out of the 31 clinical measurements under consideration, HDL-C connects the greatest number of diseases and is strongly associated with both type 2 diabetes and heart failure. Triglycerides, another blood lipid with known genetic causes in non-mendelian diseases, also adds a substantial number of edges to the ssDDN. This work demonstrates how association with clinical biomarkers can better explain the shared genetics between cardiometabolic disorders. Our study can facilitate future network-based investigations of cross-phenotype associations involving pleiotropy and genetic heterogeneity, potentially uncovering sources of missing heritability in multimorbidities. AVAILABILITY AND IMPLEMENTATION: The generated ssDDN+ can be explored at https://hdpm.biomedinfolab.com/ddn/biomarkerDDN.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Endofenotipos , Estudio de Asociación del Genoma Completo , Fenotipo , Enfermedades Cardiovasculares/genética , Biomarcadores , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
3.
medRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37293013

RESUMEN

Many diseases exhibit complex multimorbidities with one another. An intuitive way to model the connections between phenotypes is with a disease-disease network (DDN), where nodes represent diseases and edges represent associations, such as shared single-nucleotide polymorphisms (SNPs), between pairs of diseases. To gain further genetic understanding of molecular contributors to disease associations, we propose a novel version of the shared-SNP DDN (ssDDN), denoted as ssDDN+, which includes connections between diseases derived from genetic correlations with endophenotypes. We hypothesize that a ssDDN+ can provide complementary information to the disease connections in a ssDDN, yielding insight into the role of clinical laboratory measurements in disease interactions. Using PheWAS summary statistics from the UK Biobank, we constructed a ssDDN+ revealing hundreds of genetic correlations between disease phenotypes and quantitative traits. Our augmented network uncovers genetic associations across different disease categories, connects relevant cardiometabolic diseases, and highlights specific biomarkers that are associated with cross-phenotype associations. Out of the 31 clinical measurements under consideration, HDL-C connects the greatest number of diseases and is strongly associated with both type 2 diabetes and diabetic retinopathy. Triglycerides, another blood lipid with known genetics causes in non-mendelian diseases, also adds a substantial number of edges to the ssDDN. Our study can facilitate future network-based investigations of cross-phenotype associations involving pleiotropy and genetic heterogeneity, potentially uncovering sources of missing heritability in multimorbidities.

4.
Curr Protoc ; 2(11): e603, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36441943

RESUMEN

Genome-wide association studies (GWAS) are being conducted at an unprecedented rate in population-based cohorts and have increased our understanding of the pathophysiology of many complex diseases. Regardless of the context, the practical utility of this information ultimately depends upon the quality of the data used for statistical analyses. Quality control (QC) procedures for GWAS are constantly evolving. Here, we enumerate some of the challenges in QC of genotyped GWAS data and describe the approaches involving genotype imputation of a sample dataset along with post-imputation quality assurance, thereby minimizing potential bias and error in GWAS results. We discuss common issues associated with QC of the GWAS data (genotyped and imputed), including data file formats, software packages for data manipulation and analysis, sex chromosome anomalies, sample identity, sample relatedness, population substructure, batch effects, and marker quality. We provide detailed guidelines along with a sample dataset to suggest current best practices and discuss areas of ongoing and future research. © 2022 Wiley Periodicals LLC.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proyectos de Investigación , Humanos , Control de Calidad , Genotipo , Aberraciones Cromosómicas Sexuales
5.
Nat Commun ; 13(1): 1038, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210415

RESUMEN

Although recent work has described the microbiome in solid tumors, microbial content in hematological malignancies is not well-characterized. Here we analyze existing deep DNA sequence data from the blood and bone marrow of 1870 patients with myeloid malignancies, along with healthy controls, for bacterial, fungal, and viral content. After strict quality filtering, we find evidence for dysbiosis in disease cases, and distinct microbial signatures among disease subtypes. We also find that microbial content is associated with host gene mutations and with myeloblast cell percentages. In patients with low-risk myelodysplastic syndrome, we provide evidence that Epstein-Barr virus status refines risk stratification into more precise categories than the current standard. Motivated by these observations, we construct machine-learning classifiers that can discriminate among disease subtypes based solely on bacterial content. Our study highlights the association between the circulating microbiome and patient outcome, and its relationship with disease subtype.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Microbiota , Trastornos Mieloproliferativos , Bacterias/genética , Disbiosis/microbiología , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/genética , Humanos , Microbiota/genética
6.
BMC Cancer ; 21(1): 211, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648471

RESUMEN

BACKGROUND: Meningiomas are common brain tumours that are usually defined by benign clinical course. However, some meningiomas undergo a malignant transformation and recur within a short time period regardless of their World Health Organization (WHO) grade. The current study aimed to identify potential markers that can discriminate between benign and malignant meningioma courses. METHODS: We profiled the metabolites from 43 patients with low- and high-grade meningiomas. Tumour specimens were analyzed by nuclear magnetic resonance analysis; 270 metabolites were identified and clustered with the AutoPipe algorithm. RESULTS: We observed two distinct clusters marked by alterations in glycine/serine and choline/tryptophan metabolism. Glycine/serine cluster showed significantly lower WHO grades and proliferation rates. Also progression-free survival was significantly longer in the glycine/serine cluster. CONCLUSION: Our findings suggest that alterations in glycine/serine metabolism are associated with lower proliferation and more recurrent tumours. Altered choline/tryptophan metabolism was associated with increases proliferation, and recurrence. Our results suggest that tumour malignancy can be reflected by metabolic alterations, which may support histological classifications to predict the clinical outcome of patients with meningiomas.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Anciano , Algoritmos , Colina/metabolismo , Análisis por Conglomerados , Progresión de la Enfermedad , Femenino , Glicina/metabolismo , Humanos , Masculino , Neoplasias Meníngeas/química , Neoplasias Meníngeas/mortalidad , Meningioma/química , Meningioma/mortalidad , Persona de Mediana Edad , Clasificación del Tumor , Resonancia Magnética Nuclear Biomolecular , Supervivencia sin Progresión , Serina/metabolismo , Resultado del Tratamiento , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...