Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 22(6): 45-49, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34021698

RESUMEN

PURPOSE: Single isocenter technique (SIT) for linear accelerator-based stereotactic radiosurgery (SRS) is feasible. However, SIT introduces the potential for rotational error which can lead to geographical miss. Additional planning treatment volume (PTV) margin is required when using SIT. With the six degrees of freedom (6DoF) couch, rotational error can be minimized. We sought to evaluate the effect of the 6DoF couch on the dosimetry of patients with multiple brain metastases treated with SIT. MATERIALS AND METHODS: Ten consecutive patients treated with SRS to ≥3 metastases were identified. Original treatments had MIT plans (MITP). The lesions were replanned using SIT. Lesions 5-10 cm from isocenter had an additional 1mm of margin. Patients were replanned with these additional margins to account for inability to correct rotational error (SITPM). Multiple dosimetric variables and time metrics were evaluated. Dosimetry planning time (DPT) and patient treatment time (PTT) were evaluated. Statistics were calculated using the Wilcoxon signed-rank test. RESULTS: A total of 73 brain metastases receiving SRS, to a median of 6 lesions per patient, were identified. MITPs treated 73 lesions with 63 isocenters. On average, MITPs had a 19.2% higher brain V12 than SITPs (P = 0.017). For creation of SITPM, 30 lesions required 1 mm of additional margin, while none required 2 mm of margin. This increased V12 by 47.8% on average per patient (P = 0.008) from SITP to SITPM. DPT was 5.5 hours for SITP, while median for MITP was 12.5 hours (P = 0.005) PTT was 30 minutes for SITP, while median for MITP was 144 minutes (P = 0.005). CONCLUSIONS: SITPs are comparable to MITPs if rotational error can be corrected with the use of a 6DoF couch. Increasing margin to account for rotational error leads to a nearly 50% increase in V12, which could result in higher rates of radiation necrosis. Time savings are significant using SIT.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Humanos , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
2.
Med Dosim ; 46(2): 171-178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33272744

RESUMEN

We aimed to compare prototype treatment plans for a new biology-guided radiotherapy (BgRT) machine in its intensity-modulated radiation therapy (IMRT) mode with those using existing IMRT delivery techniques in treatment of nasopharyngeal carcinoma (NPC). We retrospectively selected ten previous NPC patients treated in 33 fractions according to the NRG-HN001 treatment protocol. Three treatment plans were generated for each patient: a helical tomotherapy (HT) plan with a 2.5-cm jaw, a volumetric modulated arc therapy (VMAT) plan using 2 to 4 6-MV arc fields, and a prototype IMRT plan for a new BgRT system which uses a 6-MV photon beam on a ring gantry that rotates at 60 rotations per minute with a couch that moves in small incremental steps. Treatment plans were compared using dosimetric parameters to planning target volumes (PTVs) and organs at risk (OARs) as specified by the NRG-HN001 protocol. Plans for the three modalities had comparable dose coverage, mean dose, and dose heterogeneity to the primary PTV, while the prototype IMRT plans had greater dose heterogeneity to the non-primary PTVs, with the average homogeneity index ranging from 1.28 to 1.50 in the prototype plans. Six of all the 7 OAR mean dose parameters were lower with statistical significance in the prototype plans compared to the HT and VMAT plans with the other mean dose parameter being comparable, and all the 18 OAR maximum dose parameters were comparable or lower with statistical significance in the prototype plans. The average left and right parotid mean doses in the prototype plans were 10.5 Gy and 10.4 Gy lower than those in the HT plans, respectively, and were 5.1 Gy and 5.2 Gy lower than those in the VMAT plans, respectively. Compared to that with the HT and VMAT plans, the treatment time was longer with statistical significance with the prototype IMRT plans. Based on dosimetric comparison of ten NPC cases, the prototype IMRT plans achieved comparable or better critical organ sparing compared to the HT and VMAT plans for definitive NPC radiotherapy. However, there was higher dose heterogeneity to non-primary targets and longer estimated treatment time with the prototype plans.


Asunto(s)
Neoplasias Nasofaríngeas , Radioterapia de Intensidad Modulada , Biología , Humanos , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...