Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315709

RESUMEN

EF-P is a translation factor that facilitates the formation of peptide bonds between consecutive prolines. Using FRET between EF-P and ribosomal protein bL33, we studied dynamics and specificity of EF-P binding to the ribosome. Our findings reveal that EF-P rapidly scans for a free E site and can bind to any ribosome containing a P-site tRNA, regardless of the ribosome's functional state. The interaction with uL1 is essential for EF-P binding, while the ß-Lys modification of EF-P doubles the association rate. Specific interactions with the D-loop of tRNAPro or tRNAfMet and via the ß-Lys group with the tRNA in the peptidyl transferase center reduce the rate of EF-P dissociation from the ribosome, providing the specificity for complexes that need help in catalyzing peptide bond formation. The nature of the E-site codon has little effect on EF-P binding kinetics. Although EF-P dissociation is reduced upon recognizing its correct tRNA substrate, it remains sufficiently rapid compared to tRNA translocation and does not affect the translocation rate. These results highlight the importance of EF-P's scanning-engagement mechanism for dynamic substrate recognition during rapid translation.

2.
Nature ; 632(8023): 39-49, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085542

RESUMEN

In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of 'undruggable' targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by ß-lactams that bind covalently to inhibit transpeptidases and ß-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed ß-strands of darobactins that target the undruggable ß-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.


Asunto(s)
Antibacterianos , Bacterias , Productos Biológicos , Animales , Humanos , Aminoglicósidos/farmacología , Aminoglicósidos/química , Aminoglicósidos/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/metabolismo , Bacterias/efectos de los fármacos , Bacterias/enzimología , Bacterias/metabolismo , Antibióticos Betalactámicos/química , Antibióticos Betalactámicos/farmacología , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Diseño de Fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Peptidil Transferasas/antagonistas & inhibidores , Profármacos/farmacología , Profármacos/química , Profármacos/metabolismo , Sideróforos/metabolismo , Sideróforos/química , Sideróforos/farmacología
3.
Nat Commun ; 12(1): 1830, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758186

RESUMEN

Aminoglycoside antibiotics target the ribosome and induce mistranslation, yet which translation errors induce bacterial cell death is unclear. The analysis of cellular proteins by quantitative mass spectrometry shows that bactericidal aminoglycosides induce not only single translation errors, but also clusters of errors in full-length proteins in vivo with as many as four amino acid substitutions in a row. The downstream errors in a cluster are up to 10,000-fold more frequent than the first error and independent of the intracellular aminoglycoside concentration. The prevalence, length, and composition of error clusters depends not only on the misreading propensity of a given aminoglycoside, but also on its ability to inhibit ribosome translocation along the mRNA. Error clusters constitute a distinct class of misreading events in vivo that may provide the predominant source of proteotoxic stress at low aminoglycoside concentration, which is particularly important for the autocatalytic uptake of the drugs.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Factor Tu de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas/genética , Proteoma/genética , Ribosomas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectrometría de Masas , Mutación Missense , Nebramicina/análogos & derivados , Nebramicina/farmacología , Factor Tu de Elongación Peptídica/genética , Péptidos/genética , Péptidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Proteómica , Proteínas Recombinantes , Ribosomas/efectos de los fármacos , Estreptomicina/farmacología , Estrés Fisiológico/genética
4.
Nucleic Acids Res ; 48(3): 1056-1067, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31511883

RESUMEN

During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, -1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation.


Asunto(s)
Biosíntesis de Proteínas , Codón de Terminación , Sistema de Lectura Ribosómico , Ribosomas/metabolismo
5.
Nucleic Acids Res ; 47(6): 2932-2945, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30649420

RESUMEN

Assessment of the fidelity of gene expression is crucial to understand cell homeostasis. Here we present a highly sensitive method for the systematic Quantification of Rare Amino acid Substitutions (QRAS) using absolute quantification by targeted mass spectrometry after chromatographic enrichment of peptides with missense amino acid substitutions. By analyzing incorporation of near- and non-cognate amino acids in a model protein EF-Tu, we show that most of missense errors are too rare to detect by conventional methods, such as DDA, and are estimated to be between <10-7-10-5 by QRAS. We also observe error hotspots of up to 10-3 for some types of mismatches, including the G-U mismatch. The error frequency depends on the expression level of EF-Tu and, surprisingly, the amino acid position in the protein. QRAS is not restricted to any particular miscoding event, organism, strain or model protein and is a reliable tool to analyze very rare proteogenomic events.


Asunto(s)
Proteínas de Escherichia coli/genética , Expresión Génica/genética , Mutación Missense/genética , Factor Tu de Elongación Peptídica/genética , Aminoácidos , Escherichia coli/genética , Homeostasis/genética
6.
Elife ; 72018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29889659

RESUMEN

Release factors RF1 and RF2 promote hydrolysis of peptidyl-tRNA during translation termination. The GTPase RF3 promotes recycling of RF1 and RF2. Using single molecule FRET and biochemical assays, we show that ribosome termination complexes that carry two factors, RF1-RF3 or RF2-RF3, are dynamic and fluctuate between non-rotated and rotated states, whereas each factor alone has its distinct signature on ribosome dynamics and conformation. Dissociation of RF1 depends on peptide release and the presence of RF3, whereas RF2 can dissociate spontaneously. RF3 binds in the GTP-bound state and can rapidly dissociate without GTP hydrolysis from termination complex carrying RF1. In the absence of RF1, RF3 is stalled on ribosomes if GTP hydrolysis is blocked. Our data suggest how the assembly of the ribosome-RF1-RF3-GTP complex, peptide release, and ribosome fluctuations promote termination of protein synthesis and recycling of the release factors.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/genética , Aminoacil-ARN de Transferencia/genética , Ribosomas/genética , Carbocianinas/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Imagen Individual de Molécula , Termodinámica
7.
Mol Cell ; 68(3): 515-527.e6, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100052

RESUMEN

Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyl-tRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Péptidos/metabolismo , Ribosomas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Conformación de Ácido Nucleico , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/ultraestructura , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/metabolismo , Péptidos/química , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , Relación Estructura-Actividad , Factor 5A Eucariótico de Iniciación de Traducción
8.
Mol Cell ; 66(4): 558-567.e4, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525745

RESUMEN

Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that -1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for -1-frame decoding. When the -1-frame aminoacyl-tRNA is lacking, the ribosomes switch into -2 frame. Quantitative mass spectrometry shows that the -2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.


Asunto(s)
Proteínas Bacterianas/biosíntesis , ADN Polimerasa III/biosíntesis , Escherichia coli/enzimología , Sistema de Lectura Ribosómico , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Bacterianas/genética , ADN Polimerasa III/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Cinética , Mutación , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
9.
Nat Commun ; 7: 11657, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216360

RESUMEN

The ribosome stalls on translation of polyproline sequences due to inefficient peptide bond formation between consecutive prolines. The translation factor EF-P is able to alleviate this stalling by accelerating Pro-Pro formation. However, the mechanism by which EF-P recognizes the stalled complexes and accelerates peptide bond formation is not known. Here, we use genetic code reprogramming through a flexible in-vitro translation (FIT) system to investigate how mutations in tRNA(Pro) affect EF-P function. We show that the 9-nt D-loop closed by the stable D-stem sequence in tRNA(Pro) is a crucial recognition determinant for EF-P. Such D-arm structures are shared only among the tRNA(Pro) isoacceptors and tRNA(fMet) in Escherichia coli, and the D-arm of tRNA(fMet) is essential for EF-P-induced acceleration of fMet-puromycin formation. Thus, the activity of EF-P is controlled by recognition elements in the tRNA D-arm.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/metabolismo , Sitios de Unión/genética , Proteínas de Escherichia coli/genética , Mutación , Motivos de Nucleótidos/genética , Factores de Elongación de Péptidos/genética , Péptidos/metabolismo , Unión Proteica/genética , Puromicina/química , Puromicina/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , Ribosomas/genética , Ribosomas/metabolismo
10.
RNA ; 21(12): 2047-52, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26475831

RESUMEN

The ribosome is the molecular machine responsible for protein synthesis in all living organisms. Its catalytic core, the peptidyl transferase center (PTC), is built of rRNA, although several proteins reach close to the inner rRNA shell. In the Escherichia coli ribosome, the flexible N-terminal tail of the ribosomal protein L27 contacts the A- and P-site tRNA. Based on computer simulations of the PTC and on previous biochemical evidence, the N-terminal α-amino group of L27 was suggested to take part in the peptidyl-transfer reaction. However, the contribution of this group to catalysis has not been tested experimentally. Here we investigate the role of L27 in peptide-bond formation using fast kinetics approaches. We show that the rate of peptide-bond formation at physiological pH, both with aminoacyl-tRNA or with the substrate analog puromycin, is independent of the presence of L27; furthermore, translation of natural mRNAs is only marginally affected in the absence of L27. The pH dependence of the puromycin reaction is unaltered in the absence of L27, indicating that the N-terminal α-amine is not the ionizing group taking part in catalysis. Likewise, L27 is not required for the peptidyl-tRNA hydrolysis during termination. Thus, apart from the known effect on subunit association, which most likely explains the phenotype of the deletion strains, L27 does not appear to be a key player in the core mechanism of peptide-bond formation on the ribosome.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Ribosómicas/química , Ribosomas/química , Proteínas y Péptidos de Choque por Frío/biosíntesis , Proteínas y Péptidos de Choque por Frío/química , Escherichia coli , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Cinética , Proteínas Ribosómicas/fisiología , Ribosomas/fisiología
11.
J Am Chem Soc ; 137(40): 12997-3006, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26384033

RESUMEN

The peptide bond formation with the amino acid proline (Pro) on the ribosome is slow, resulting in translational stalling when several Pro have to be incorporated into the peptide. Stalling at poly-Pro motifs is alleviated by the elongation factor P (EF-P). Here we investigate why Pro is a poor substrate and how EF-P catalyzes the reaction. Linear free energy relationships of the reaction on the ribosome and in solution using 12 different Pro analogues suggest that the positioning of Pro-tRNA in the peptidyl transferase center is the major determinant for the slow reaction. With any Pro analogue tested, EF-P decreases the activation energy of the reaction by an almost uniform value of 2.5 kcal/mol. The main source of catalysis is the favorable entropy change brought about by EF-P. Thus, EF-P acts by entropic steering of Pro-tRNA toward a catalytically productive orientation in the peptidyl transferase center of the ribosome.


Asunto(s)
Entropía , Factores de Elongación de Péptidos/química , Prolina/química , Ribosomas/química , Dominio Catalítico
12.
Proteomics ; 15(5-6): 862-79, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25546807

RESUMEN

A majority of cellular functions are carried out by macromolecular complexes. A host of biochemical and spectroscopic methods exists to characterize especially protein/protein complexes, however there has been a lack of a universal method to determine protein stoichiometries. Peptide-based MS, especially as a complementary method to the MS analysis of intact protein complexes, has now been developed to a point where it can be employed to assay protein stoichiometries in a routine manner. While the experimental demands are still significant, peptide-based MS has been successfully applied to analyze stoichiometries for a variety of protein complexes from very different biological backgrounds. In this review, we discuss the requirements especially for targeted MS acquisition strategies to be used in this context, with a special focus on the interconnected experimental aspects of sample preparation, protein digestion, and peptide stability. In addition, different strategies for the introduction of quantitative peptide standards and their suitability for different scenarios are compared.


Asunto(s)
Sustancias Macromoleculares , Espectrometría de Masas/métodos , Péptidos , Sustancias Macromoleculares/análisis , Sustancias Macromoleculares/química , Péptidos/análisis , Péptidos/química , Proteómica
13.
Nat Commun ; 4: 1387, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23340427

RESUMEN

The emergence of ribosomes and translation factors is central for understanding the origin of life. Recruitment of translation factors to bacterial ribosomes is mediated by the L12 stalk composed of protein L10 and several copies of protein L12, the only multi-copy protein of the ribosome. Here we predict stoichiometries of L12 stalk for >1,200 bacteria, mitochondria and chloroplasts by a computational analysis, and validate the predictions by quantitative mass spectrometry. The majority of bacteria have L12 stalks allowing for binding of four or six copies of L12, largely independent of the taxonomic group or living conditions of the bacteria, whereas some cyanobacteria have eight copies. Mitochondrial and chloroplast ribosomes can accommodate six copies of L12. The last universal common ancestor probably had six molecules of L12 molecules bound to L10. Changes of the stalk composition provide a unique possibility to trace the evolution of protein components of the ribosome.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/genética , Evolución Molecular , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cloroplastos/metabolismo , Dosificación de Gen , Humanos , Espectrometría de Masas , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Ribosómico 16S/genética , Proteína Ribosómica L10 , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Synechococcus/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
14.
Science ; 339(6115): 85-8, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23239624

RESUMEN

Elongation factor P (EF-P) is a translation factor of unknown function that has been implicated in a great variety of cellular processes. Here, we show that EF-P prevents ribosome from stalling during synthesis of proteins containing consecutive prolines, such as PPG, PPP, or longer proline strings, in natural and engineered model proteins. EF-P promotes peptide-bond formation and stabilizes the peptidyl-transfer RNA in the catalytic center of the ribosome. EF-P is posttranslationally modified by a hydroxylated ß-lysine attached to a lysine residue. The modification enhances the catalytic proficiency of the factor mainly by increasing its affinity to the ribosome. We propose that EF-P and its eukaryotic homolog, eIF5A, are essential for the synthesis of a subset of proteins containing proline stretches in all cells.


Asunto(s)
Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Prolina/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Escherichia coli/genética , Lisina/metabolismo , Datos de Secuencia Molecular , Prolina/genética , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional
15.
Philos Trans R Soc Lond B Biol Sci ; 366(1580): 2979-86, 2011 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-21930591

RESUMEN

Speed and accuracy of protein synthesis are fundamental parameters for the fitness of living cells, the quality control of translation, and the evolution of ribosomes. The ribosome developed complex mechanisms that allow for a uniform recognition and selection of any cognate aminoacyl-tRNA (aa-tRNA) and discrimination against any near-cognate aa-tRNA, regardless of the nature or position of the mismatch. This review describes the principles of the selection-kinetic partitioning and induced fit-and discusses the relationship between speed and accuracy of decoding, with a focus on bacterial translation. The translational machinery apparently has evolved towards high speed of translation at the cost of fidelity.


Asunto(s)
Evolución Molecular , Biosíntesis de Proteínas , Ribosomas/genética , Proteínas Bacterianas/química , Dominio Catalítico , Codón/química , Activación Enzimática , Escherichia coli/química , Escherichia coli/genética , GTP Fosfohidrolasas/química , Guanosina Trifosfato/química , Hidrólisis , Cinética , Factor Tu de Elongación Peptídica/química , Péptidos/química , Aminoacil-ARN de Transferencia/química , Ribosomas/química , Factores de Tiempo
16.
EMBO J ; 29(21): 3701-9, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-20842102

RESUMEN

The speed and accuracy of protein synthesis are fundamental parameters for understanding the fitness of living cells, the quality control of translation, and the evolution of ribosomes. In this study, we analyse the speed and accuracy of the decoding step under conditions reproducing the high speed of translation in vivo. We show that error frequency is close to 10⁻³, consistent with the values measured in vivo. Selectivity is predominantly due to the differences in k(cat) values for cognate and near-cognate reactions, whereas the intrinsic affinity differences are not used for tRNA discrimination. Thus, the ribosome seems to be optimized towards high speed of translation at the cost of fidelity. Competition with near- and non-cognate ternary complexes reduces the rate of GTP hydrolysis in the cognate ternary complex, but does not appreciably affect the rate-limiting tRNA accommodation step. The GTP hydrolysis step is crucial for the optimization of both the speed and accuracy, which explains the necessity for the trade-off between the two fundamental parameters of translation.


Asunto(s)
Codón/genética , Guanosina Trifosfato/metabolismo , Extensión de la Cadena Peptídica de Translación , Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico , Aminoacil-ARN de Transferencia , Ribosomas/metabolismo , Escherichia coli , Cinética
17.
J Biol Chem ; 283(47): 32229-35, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18809677

RESUMEN

The ribosome catalyzes peptide bond formation between peptidyl-tRNA in the P site and aminoacyl-tRNA in the A site. Here, we show that the nature of the C-terminal amino acid residue in the P-site peptidyl-tRNA strongly affects the rate of peptidyl transfer. Depending on the C-terminal amino acid of the peptidyl-tRNA, the rate of reaction with the small A-site substrate puromycin varied between 100 and 0.14 s(-1), regardless of the tRNA identity. The reactivity decreased in the order Lys = Arg > Ala > Ser > Phe = Val > Asp >> Pro, with Pro being by far the slowest. However, when Phe-tRNA(Phe) was used as A-site substrate, the rate of peptide bond formation with any peptidyl-tRNA was approximately 7 s(-1), which corresponds to the rate of binding of Phe-tRNA(Phe) to the A site (accommodation). Because accommodation is rate-limiting for peptide bond formation, the reaction rate is uniform for all peptidyl-tRNAs, regardless of the variations of the intrinsic chemical reactivities. On the other hand, the 50-fold increase in the reaction rate for peptidyl-tRNA ending with Pro suggests that full-length aminoacyl-tRNA in the A site greatly accelerates peptide bond formation.


Asunto(s)
ARN de Transferencia/química , Aminoácidos/química , Catálisis , Codón , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Conformación de Ácido Nucleico , Péptidos/química , Prolina/química , Estructura Terciaria de Proteína , ARN Catalítico/química , Ribosomas/química , Especificidad por Sustrato , Termodinámica
18.
Chem Biol ; 15(5): 493-500, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18482701

RESUMEN

The ribosome has an active site comprised of RNA that catalyzes peptide bond formation. To understand how RNA promotes this reaction requires a detailed understanding of the chemical transition state. Here, we report the Brønsted coefficient of the alpha-amino nucleophile with a series of puromycin derivatives. Both 50S subunit- and 70S ribosome-catalyzed reactions displayed linear free-energy relationships with slopes close to zero under conditions where chemistry is rate limiting. These results indicate that, at the transition state, the nucleophile is neutral in the ribosome-catalyzed reaction, in contrast to the substantial positive charge reported for typical uncatalyzed aminolysis reactions. This suggests that the ribosomal transition state involves deprotonation to a degree commensurate with nitrogen-carbon bond formation. Such a transition state is significantly different from that of uncatalyzed aminolysis reactions in solution.


Asunto(s)
Aminas/química , Proteínas Ribosómicas/química
19.
EMBO Rep ; 7(7): 699-703, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16799464

RESUMEN

The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.


Asunto(s)
Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Sitios de Unión , Técnicas In Vitro , Cinética , Péptidos/química , Peptidil Transferasas/metabolismo , Subunidades de Proteína , ARN de Transferencia de Metionina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA