Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Environ Manage ; 340: 117994, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37119630

RESUMEN

Waste valorization is mandatory to develop and consolidate a circular bioeconomy. It is necessary to search for appropriate processes to add value to different wastes by utilizing them as feedstocks to provide energy, chemicals, and materials. For instance, hydrothermal carbonization (HTC) is an alternative thermochemical process that has been suggested for waste valorization aiming at hydrochar production. Thus, this study proposed the Co-HTC of pine residual sawdust (PRS) with non-dewatered sewage sludge (SS) - two wastes largely produced in sawmills and wastewater treatment plants, respectively - without adding extra water. The influence of temperature (180, 215, and 250 °C), reaction time (1, 2, and 3 h), and PRS/SS mass ratio (1/30, 1/20, and 1/10) on the yield and characteristics of the hydrochar were evaluated. The hydrochars obtained at 250 °C had the best coalification degree, showing the highest fuel ratio, high heating value (HHV), surface area, and N, P, and K retention, although presenting the lowest yields. Conversely, hydrochar functional groups were generally reduced by increasing Co-HTC temperatures. Regarding the Co-HTC effluent, it presented acidic pH (3.66-4.39) and high COD values (6.2-17.3 g·L-1). In general, this new approach could be a promising alternative to conventional HTC, in which a high amount of extra water is required. Besides, the Co-HTC process can be an option for managing lignocellulosic wastes and sewage sludges while producing hydrochar. This carbonaceous material has the potential for several applications, and its production is a step towards a circular bioeconomy.


Asunto(s)
Carbono , Aguas del Alcantarillado , Temperatura , Madera , Agua
2.
Sci Total Environ ; 857(Pt 3): 159627, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36280070

RESUMEN

It is imperative to search for appropriate processes to convert wastes into energy, chemicals, and materials to establish a circular bio-economy toward sustainable development. Concerning waste biomass valorization, hydrothermal carbonization (HTC) is a promising route given its advantages over other thermochemical processes. From that perspective, this article reviewed the HTC of potential biomass wastes, the characterization and environmental utilization of hydrochar, and the biorefinery potential of this process. Crop and forestry residues and sewage sludge are two categories of biomass wastes (lignocellulosic and non-lignocellulosic, respectively) readily available for HTC or even co-hydrothermal carbonization (Co-HTC). The temperature, reaction time, and solid-to-liquid ratio utilized in HTC/Co-HTC of those biomass wastes were reported to range from 140 to 370 °C, 0.05 to 48 h, and 1/47 to 1/1, respectively, providing hydrochar yields of up to 94 % according to the process conditions. Hydrochar characterization by different techniques to determine its physicochemical properties is crucial to defining the best applications for this material. In the environmental field, hydrochar might be suitable for removing pollutants from aqueous systems, ameliorating soils, adsorbing atmospheric pollutants, working as an energy carrier, and performing carbon sequestration. But this material could also be employed in other areas (e.g., catalysis). Regarding the effluent from HTC/Co-HTC, this byproduct has the potential for serving as feedstock in other processes, such as anaerobic digestion and microalgae cultivation. These opportunities have aroused the industry interest in HTC since 2010, and the number of industrial-scale HTC plants and patent document applications has increased. The hydrochar patents are concentrated in China (77.6 %), the United States (10.6 %), the Republic of Korea (3.5 %), and Germany (3.5 %). Therefore, considering the possibilities of converting their product (hydrochar) and byproduct (effluent) into energy, chemicals, and materials, HTC or Co-HTC could work as the first step of a biorefinery. And this approach would completely agree with circular bioeconomy principles.


Asunto(s)
Contaminantes Ambientales , Microalgas , Biomasa , Carbono/química , Aguas del Alcantarillado , Temperatura
3.
SN Appl Sci ; 3(3): 347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33619462

RESUMEN

The bioethanol production from the sweet potato variety BRS Cuia using three different strains of Saccharomyces cerevisiae (LPB1-93, ATCC-26602, and CA-11) was carried out in this research. Comparative analyses of consumed sugar, ethanol yield, and productivity (in tons per hectare) increased along with the concentration of cells in the inoculum. Additionally, to verify the aromatic quality of a potential sweet potato distilled spirit, volatile organic compounds were analyzed. The results showed a yield of over 90% ethanol. It was observed that the sugar consumption and ethanol production rates can be increased with a higher initial concentration of cells. This resulted in higher concentrations of ethanol in shorter times. From 100 g of the sweet potato variety BRS Cuia, the highest concentration of ethanol obtained was 25.74 g L-1 using the LPB1-93 strain. The estimated bioethanol production is about 10,000 L ha-1, with two sweet potatoes crops in a year. The ethanol production from the sweet potato variety BRS Cuia is viable, representing a sustainable alternative to fuel bioethanol, as well as an alcoholic beverage due to the volatile organic compounds present in the distilled fraction.

4.
J Hazard Mater ; 404(Pt A): 124059, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33027733

RESUMEN

The sugarcane industry is one of the largest in the world and processes huge volumes of biomass, especially for ethanol and sugar production. These processes also generate several environmentally harmful solid, liquid, and gaseous wastes. Part of these wastes is reused, but with low-added value technologies, while a large unused fraction continues to impact the environment. In this review, the classic waste reuse routes are outlined, and promising green and circular technologies that can positively impact this sector are discussed. To remain competitive and reduce its environmental impact, the sugarcane industry must embrace technologies for bagasse fractionation and pyrolysis, microalgae cultivation for both CO2 recovery and vinasse treatment, CO2 chemical fixation, energy generation through the anaerobic digestion of vinasse, and genetically improved fermentation yeast strains. Considering the technological maturity, the anaerobic digestion of vinasse emerges as an important solution in the short term. However, the greatest environmental opportunity is to use the pure CO2 from fermentation. The other opportunities still require continued research to reach technological maturity. Intensifying the processes, the exploration of driving-change technologies, and the integration of wastes through biorefinery processes can lead to a more sustainable sugarcane processing industry.


Asunto(s)
Microalgas , Saccharum , Biomasa , Etanol , Gases
5.
Int J Biol Macromol ; 167: 1499-1507, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33212110

RESUMEN

Lignin was extracted from oil palm empty fruit bunches under four different conditions. The lignin samples were characterized and employed in the green synthesis of silver nanoparticles. Two-dimensional HSQC NMR analysis showed that lignins extracted under more aggressive conditions (3.5% acid, 60 min) exhibited less signals and thus, presented a more degraded chemical structure. Additionally, those lignins obtained under harsh conditions (3.5% acid, 60 min) exhibited higher antioxidant capacity than those obtained under mild conditions (1.5% acid, 20 min). Formation of lignin-mediated silver nanoparticles was confirmed by color change during their synthesis. The surface plasmon resonance peaks (423-427 nm) in UV-visible spectra also confirmed the synthesis of AgNPs. AgNPs showed spherical shape, polycrystalline nature and average size between 18 and 20 nm. AgNPs, in suspension, presented a negative Zeta potential profile. Lignin was assumed to contribute in the antioxidant capacity exhibited by AgNPs. All AgNPs presented no significant differences on the disk diffusion antimicrobial susceptibility test against E. coli. The minimum inhibitory concentration of HAL3-L AgNPs (62.5 µg·mL-1) was better than other physicochemically produced AgNPs (100 µg·mL-1).


Asunto(s)
Antibacterianos/química , Antioxidantes/química , Tecnología Química Verde/métodos , Lignina/química , Lignina/aislamiento & purificación , Nanopartículas del Metal/química , Extractos Vegetales/química , Plata/química , Dispersión Dinámica de Luz , Escherichia coli/efectos de los fármacos , Frutas/química , Tecnología Química Verde/instrumentación , Espectroscopía de Resonancia Magnética , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Aceite de Palma , Phoeniceae/química , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier , Resonancia por Plasmón de Superficie
6.
Bioresour Technol ; 320(Pt A): 124212, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33157450

RESUMEN

Pentose-rich hydrolysate obtained from dilute acid pretreatment of oil palm empty fruit bunches was successfully consumed by pentose-consuming yeasts: Cyberlindnera jadinii (Cj) and Pichia jadinii (Pj). Nitrogen supplementation and no additional detoxification step were required. Pj produced 5.87 g/L of biomass using a C/N ratio of 14 after 120 h of fermentation, with xylose consumption of 71%. Cj produced 10.50 g/L of biomass after 96 h of fermentation with C/N ratio of 11.5, with maximum xylose consumption of 85%. ß-glucans, high value-added macromolecules, were further extracted from the yeast biomass, achieving yields of 3.1 and 3.0% from Pj and Cj, respectively. The isolated polysaccharides showed a chemical structure of ß-(1,3)-glucan with residues of other molecules. Additionally, ß-(1,6) branches seems to have been broken during isolation process. Further studies assessing ß-glucans production at industrial scale should be carried out looking for nitrogen sources and optimizing the ß-glucan isolation method.


Asunto(s)
Candida , beta-Glucanos , Biomasa , Fermentación , Frutas , Aceite de Palma , Pentosas
7.
Bioresour Technol ; 316: 123884, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32889386

RESUMEN

Timber industry generates large amounts of residues such as sawdust. Softwoods have a significant economic value for timber production and the Pinus genus is widely utilized. Thus, the aim of this work was to study the hemicellulose extraction and lignin recovery from pine (Pinus spp.) residual sawdust (PRS) by sequential acid-alkaline treatment, generating a cellulose-rich solid fraction. The hemicellulose removed was 87.11% (wt·wt-1) after dilute acid treatment at 130 °C, 4.5% (wt·wt-1) of H2SO4 for 20 min at 120 rpm. Three temperatures were evaluated for recovering the lignin and the highest yield, 93.97% (wt·wt-1), was achieved at 170 °C, 10% (wt·wt-1) of NaOH for 90 min at 120 rpm. Lignin was characterized by Fourier-transform infrared spectroscopy, nuclear magnetic resonance and thermogravimetry. The resulting cellulose-rich fraction exhibited polymorphic transformation. The results demonstrated that PRS is a promising lignocellulosic residue whose lignin and carbohydrates can be readily obtained.


Asunto(s)
Lignina , Pinus , Celulosa , Hidrólisis , Termogravimetría , Madera
8.
Bioresour Technol ; 309: 123331, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32283484

RESUMEN

Biohydrogen production was evaluated using cassava processing wastewater (CPW) and two microbial consortia (Vir and Gal) from different Brazilian environments. The biohydrogen production was optimized using a Box-Behnken design (T, pH, C/N, and % v/v inoculum). Maximum yields were obtained with hydrolyzed substrate: 4.12 and 3.80 mol H2 / for Vir and Gal, respectively. Similarly, the kinetic parameters µ, k, and q were higher with hydrolyzed CPW in both consortia. The molecular analysis of the consortia through Illumina high-throughput sequencing showed the presence of bacteria from the families Porphyromonadaceae, Clostridiaceae, Ruminococcaceae, and Enterococcaceae. The relative abundance of microbial families varies as fermentation progresses. In both consortia, Clostridiaceae reached the maximum relative abundance in the media between 16 and 24 h, interval in which approximately 90% of the biohydrogen is generated.


Asunto(s)
Manihot , Aguas Residuales , Reactores Biológicos , Brasil , Fermentación , Hidrógeno , Cinética , Consorcios Microbianos
9.
Biotechnol Appl Biochem ; 67(5): 723-731, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31545870

RESUMEN

Second-generation bioethanol production process was developed using pretreated empty fruit bunches (EFB). Consecutive acid/alkali EFB pretreatment was performed, first with HCl and then with NaOH with final washing steps for phenolic compounds elimination. Scanning electron microscopy images showed that EFB chemical treatments indeed attacked the cellulose fibers and removed the silica from surface pores. The optimization of enzymatic hydrolysis of EFB's cellulosic fraction was performed with 0.5%-4% v/v of Cellic® CTec2/Novozymes, different EFB concentrations (5%-15%, w/v), and hydrolysis time (6-72 H). Optimization essays were carried out in Erlenmeyer flasks and also in a 1 L stirred tank reactor. After enzymatic hydrolysis, a hydrolysate with 66 g/L of glucose was achieved with 2.2% (v/v) Cellic® CTec2, 15% (m/v) acid/alkaline pretreated EFB after 39 H of hydrolysis. A gain of 11.2% was then obtained in the 1 L stirred tank promoted by the agitation (72.2 g/L glucose). The hydrolysate was employed in bioethanol production by a new isolate Candida pelliculosa CCT 7734 in a separate hydrolysis and fermentation process reaching 16.6 and 23.0 g/L of bioethanol through batch and fed-batch operation, respectively. An integrated biorefinery process was developed for EFB processing chain.


Asunto(s)
Arecaceae/metabolismo , Biocombustibles , Etanol/metabolismo , Saccharomycetales/metabolismo , Biocatálisis , Biocombustibles/análisis , Biocombustibles/microbiología , Celulosa/metabolismo , Etanol/análisis , Fermentación , Frutas/metabolismo , Hidrólisis , Microbiología Industrial
10.
Bioresour Technol ; 292: 121955, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31404754

RESUMEN

A new method for CO2 recovery was proposed for cultivation of different microalgae. First, a chemical fixation, where CO2 was injected in alkalinized vinasse to form (bi)carbonate salts, was performed. In addition, biological fixation with CO2-enriched air injection was also accomplished for evaluation of the most promising results. Two bioreactor systems, a stirred-tank reactor and a bubble column reactor, were employed. A higher carbon transfer rate (43.35 g.L-1.h-1) was achieved in the bubble column reactor using NaOH-alkalinized vinasse, along with reductions of the chemical oxygen demand (COD), biological oxygen demand (BOD) and turbidity (TD). This allowed the cultivation of microalgae and cyanobacteria at vinasse concentrations between 70 and 100%, reaching a biomass production of 2.25 g.L-1 in 15 days of culture. The viability of chemical CO2 fixation together with the use of 100% treated vinasse from a bioethanol production unit for microalgae cultivation has been demonstrated in a successfully integrated biorefinery approach.


Asunto(s)
Microalgas , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Carbono , Dióxido de Carbono , Gases
11.
Bioresour Technol ; 247: 1165-1172, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29055530

RESUMEN

Cassava, the 5th most important staple crop, generates at least 600L of wastewater per ton of processed root. This residue, cassava processing wastewater (CPW) has a high chemical oxygen demand, that can reach 56 g/L, and has also high concentrations of several mineral nutrients. The cultivation of microalgae such as Chlorella, Spirulina and wild strains was evaluated in the last years in raw, minimally processed and partially digested CPW. Concentrations of 2-4 g/L of these microalgae, comparable to those obtained in synthetic media, could be reached. The BOD of the residue was reduced by up to 92%. This process can be integrated into cassava processing industries, if challenges such as the toxicity of the concentrated residue, bacterial contamination, and the isolation of robust strains are addressed. Because CPW carries about 11% of the crop energy, integrating biogas production and microalgal cultivation into the cassava processing chain is promising.


Asunto(s)
Manihot , Microalgas , Biocombustibles , Biomasa , Chlorella , Aguas Residuales
12.
Biomed Res Int ; 2015: 240231, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26640784

RESUMEN

Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source.


Asunto(s)
Grano Comestible/metabolismo , Fermentación , Ácido Láctico/biosíntesis , Lactobacillus acidophilus/metabolismo , Amoníaco/química , Medios de Cultivo , Grano Comestible/química , Glucosa/química , Ácido Láctico/química , Lactobacillus acidophilus/química , Nitrógeno/química
13.
Food Res Int ; 75: 348-356, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28454966

RESUMEN

In this study, the potential use of Pichia fermentans YC5.2 as a starter culture to conduct controlled coffee bean fermentations during on-farm wet processing was investigated. Inoculated fermentations were conducted with or without the addition of 2% (w/v) sucrose, and the resultant microbial growth and metabolism, bean chemistry and beverage quality were compared with spontaneous (control) fermentation. In both inoculated treatments, P. fermentans prevailed over indigenous microbiota and a restricted microbial composition was observed at the end of fermentation process. The inoculation also increased the production of specific volatile aroma compounds (e.g., ethanol, acetaldehyde, ethyl acetate and isoamyl acetate) and decreased the production of lactic acid during the fermentation process. Sucrose supplementation did not significantly interfere with the growth and frequency of P. fermentans YC5.2 inoculum but maintained high levels of wild bacteria population and lactic acid production similar to the spontaneous process. In roasted beans, the content of sugars and organic acids were statistically (p<0.05) similar for all the treatments. However, the inoculated fermentations were shown to influence the volatile fraction of roasted coffee beans by increasing the concentration of yeast-derived metabolites compared to control. Sensory analysis of coffee beverages demonstrated that the use of the YC5.2 strain was favorable for the production of high-quality coffees with distinctive characteristics, e.g., intense perception of 'vanilla' taste and 'floral' aromas. In conclusion, the use of P. fermentans YC5.2 in coffee processing was shown to be a viable alternative to control the fermentation step and to ensure consistent quality of finished products.

14.
Braz. arch. biol. technol ; 57(1): 119-125, Jan.-Feb. 2014. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-702578

RESUMEN

Gasoline vapors pollute the atmosphere and can be harmful to human and animal health. Tons of particles of this pollutant are expelled to the atmosphere, generating great economic losses to the industries and serious damage to the environment. Biofiltration is an option of simple technology with low costs that can be used for the gasoline vapor treatment. The present study was carried out in two biofilter systems of laboratorial scale. The biofilter system 1 was operated with a total volume of 2.72 L (four columns) and the biofilter 2 with 2.04 L (three columns) of total volume. Both of them were operated in sequence, with airflow of 450 mL entering each one. Results obtained were as follows for the removal efficiency (RE) of different gasoline vapor concentrations in the air: 1.3 g.m-3 during 35 days, RE of 100%; 3 g.m-3 during 52 days, RE of 90%; 4.5 g.m-3 during 48 days, RE of 70-80% and 8g.m-3 during 28 days, RE of 70%.

15.
Braz. arch. biol. technol ; 56(4): 679-689, July-Aug. 2013. tab
Artículo en Inglés | LILACS | ID: lil-684521

RESUMEN

The valorization of agro-residues by biological routes is a key technology that contributes to the development of sustainable processes and the generation of value-added products. Sugarcane bagasse is an agro-residue generated by the sugar and alcohol industry in Brazil (186 million tons per year), composed essentially of cellulose (32-44%), hemicellulose (27-32%) and lignin (19-24%). The conversion of sugarcane bagasse into fermentable sugars requires essentially two steps: pretreatment and hydrolysis. The aim of the pretreatment is to separate the lignin and break the structure of lignocellulose, and it is one of the most critical steps in the process of converting biomass to fermentable sugars. The aim of this review is to describe different pretreatment strategies to promote the delignification of the sugarcane bagasse by thermo-chemical and biological processes.

16.
Braz. arch. biol. technol ; 54(5): 1053-1058, Sept.-Oct. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-604267

RESUMEN

The objective of this work was to study the poultry litter composting and evaluate the physico-chemical and microbiological transformations as a time-function. At the end of composting, an increase of humification matter, a decrease of microbial diversity and the elimination of pathogens were observed. Results showed that poultry litter was liable of composting, without any nutritional complementation or inoculation and the process occurred similarly to other kind of organic residues.

17.
Bioprocess Biosyst Eng ; 33(9): 1033-41, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20454907

RESUMEN

Fermentation parameters for phytase production in column-type bioreactor were monitored using a new data acquisition system. There are a number of studies reporting phytase production in flasks, but a lack of data about microorganism respiration behaviour during phytase production using column bioreactor. The objectives of this work were the monitoration of fermentation parameters during phytase production and its relation with fungal growth and forced air. Phytase production by A. niger FS3 increased with forced air. The O(2) consumption and CO(2) production during solid-state fermentation were monitored by sensors (in the bottom and top of the columns) linked to controllers, recorded by acquisition software and processed by Fersol2(®) software tool. Phytase synthesis was associated with fungal growth. Therefore, phytase could be used to estimate FS3 biomass formed in citric pulp degradation.


Asunto(s)
6-Fitasa/biosíntesis , Aspergillus/genética , Reactores Biológicos , Fermentación , Microbiología Industrial/métodos , 6-Fitasa/química , Biomasa , Dióxido de Carbono/química , Medios de Cultivo/química , Diseño de Equipo , Microbiología Industrial/instrumentación , Cinética , Consumo de Oxígeno , Programas Informáticos , Temperatura , Factores de Tiempo
18.
Braz. arch. biol. technol ; 52(spe): 37-43, Nov. 2009. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-539846

RESUMEN

The research for new techniques of in vitro cultivation is being object of many studies around the world, in order to optimize and decrease production costs of seedlings with agronomical interest. The main goal of this work was to compare different systems of in vitro cultivations using Ananas comosus L. Merril. So, the in vitro growth of the plantlets was promoted in two different bioreactors: Bioreactor of Immersion by Bubbles (B.I.B.®) and the Reactor of Temporary Immersion (R.I.T.A.®) with immersion cycle every 2 hours for 15 minutes and the traditional system in flasks with 200 mL. All cultivation systems used the MS liquid nutritive solution, supplemented with BAP (1 mgL-1), ANA (0.25 mgL-1), sucrose (30 gL-1) and Tween 20® (0.5 µL). The pH was adjusted to 5.8 and sterilized at 120°C for 15 minutes. The cultures were kept into a growth room during 30 days, with controlled temperature of 25±2°C, under white cold light (46.8 µmol.m-2.s-1), with photoperiod of 16 hours. The experimental design used was randomized, with three treatments, three repetitions and ten plants each stage. Among the evaluated systems, the BIB® presented the best results for the tested variables, mainly the total number of shoots, being 2.3 e 3.1 times superior when compared with the system R.I.T.A.® and the traditional consecutively. So the system of immersion by bubbles turns into an effective equipment to produce seedlings of pineapple in large scale.


A busca por novas técnicas de cultivo in vitro vem sendo amplamente estudadas, visando otimizar e baixar o custo de produção das mudas que tenham interesse agronômico. O objetivo deste trabalho foi comparar diferentes sistemas de cultivo in vitro de Ananas comosus L. Merril. Para tanto, o crescimento in vitro de plântulas foi promovido em sistemas de biorreatores (B.I.B.® e R.I.T.A.®) com ciclo de imersão a cada 2 horas por 15 minutos e o sistema tradicional em frascos de 200 mL. Em todos os sistemas de cultivo, foram utilizadas solução nutritiva líquida MS, suplementado com 1 mg L-1 de BAP, 0,25 mg L-1 de ANA, 30 g L-1 de sacarose e 0,5 µL de Tween® 20, pH ajustado para 5,8 e autoclavagem a 120°C por 15 minutos. As culturas foram mantidas em sala de crescimento durante 30 dias, temperatura controlada de 25±2°C, sob luz branca fria (46,8 µmol.m-2.s-1), com 16 horas de fotoperíodo. O delineamento foi inteiramente casualizado, com três tratamentos, três repetições e dez plantas por estágios. Para os sistemas avaliados, o biorreator de imersão por bolhas apresentou os melhores resultados dentre as variáveis analisadas, com destaque ao número total de brotações, sendo 2,3 e 3,1 vezes superiores quando comparado com o sistema R.I.T.A.® e sistema tradicional respectivamente. Portanto, o sistema de imersão por bolhas torna-se um equipamento eficaz na produção de mudas de abacaxizeiro em larga escala.

19.
Braz. arch. biol. technol ; 52(spe): 143-150, Nov. 2009. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-539860

RESUMEN

Starch nutritional fractions as well as thermal properties and other analysis are essential for food and industrial application. Cassava bagasse is an important agro-industrial residue and its starch content was evaluated using two alternative methods. Thermal characterization and microscopy analyses helped to understand how hydrolysis digests starchy fraction of cassava bagasse. The melting point of cassava starch occurred at 169.2ºC. Regarding TG analyses, after moisture content, there were observed two main mass losses for all samples. Results suggest hydrolysis carried out using enzyme is less effective in order to convert total starch content in cassava bagasse. However, using sulfuric acid, fibers are affected by analyses conditions.


As frações nutricionais bem como as propriedades térmicas e outras análises são essenciais para a indústria de alimentos e suas aplicações O bagaço de mandioca é um importante resíduo agroindustrial e seu teor de amido foi avaliado por dois métodos alternativos. A caracterização por análise térmica e microscopia ajudou na compreensão de como a hidrólise digere a fração amilácea do bagaço de mandioca, O ponto de fusão foi de 170ºC, a análise termogravimétrica (TG) mostrou após a perda de umidade do material, duas principais perdas de massa em todas as amostras analisadas. Os resultados sugerem que a hidrólise enzimática é menos eficiente na conversão total de amido no bagaço de mandioca. No entanto, o uso de ácido sulfúrico degradou até mesmo a parcela fibrosa do material, afetando as condições de análise.

20.
Braz. arch. biol. technol ; 52(spe): 151-158, Nov. 2009. graf, tab
Artículo en Inglés | LILACS | ID: lil-539861

RESUMEN

A simplified model to describe fungal growth during citric pulp fermentation for phytase production was described for the first time. Experimental data for biomass growth were adjusted to classical mathematical growth models (Monod and Logistic). The Monod model predictions showed good agreement with the experimental results for biomass concentration during 96 hours of fermentation. Parameters such as yield of biomass from oxygen (Y X/O), maintenance coefficient (m) and specific growth rate (µ) were compared showing a good correlation between the data and the model. An alternative method for biomass determination in this process was developed since a great correlation was found between biomass growth and enzyme formation.


Um modelo simplificado para descrever o crescimento fúngico durante a fermentação em polpa citric para a produção da fitase foi descrita pela primeira vez. Dados experimentais para a formação de biomassa foram ajustados a modelos clássicos de crescimento microbiano (Monod e Logístico). O modelo Monod previsto mostrou boa correlação aos resultados experimentais para a concentração de biomassa até 96 horas de fermentação. Parâmetros como rendimento de biomassa a partir de oxigênio (Y X/O), coeficiente de manutenção (m) e taxa específica de crescimento (µ) foram comparados mostrando uma boa correlação entre os dados e o modelo. Um método alternativo para a determinação de biomassa neste processo foi desenvolvido a partir de uma excelente correlação encontrado entre o crescimento microbiano e a formação da enzima.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...