Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 133(4): 559-572, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38324309

RESUMEN

BACKGROUND AND AIMS: The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS: We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS: The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and ß-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS: Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.


Asunto(s)
Autofagia , Evolución Biológica , Pared Celular , Xilema , Pared Celular/metabolismo , Autofagia/fisiología , Xilema/fisiología , Cycadopsida/fisiología , Floema , Proteínas de Plantas/metabolismo , Magnoliopsida/fisiología , Helechos/fisiología , Helechos/citología
2.
Plant Methods ; 19(1): 129, 2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-37981669

RESUMEN

The evolution of plants to efficiently transport water and assimilates over long distances is a major evolutionary success that facilitated their growth and colonization of land. Vascular tissues, namely xylem and phloem, are characterized by high specialization, cell heterogeneity, and diverse cell components. During differentiation and maturation, these tissues undergo an irreversible sequence of events, leading to complete protoplast degradation in xylem or partial degradation in phloem, enabling their undisturbed conductive function. Due to the unique nature of vascular tissue, and the poorly understood processes involved in xylem and phloem development, studying the molecular basis of tissue differentiation is challenging. In this review, we focus on methods crucial for gene expression research in conductive tissues, emphasizing the importance of initial anatomical analysis and appropriate material selection. We trace the expansion of molecular techniques in vascular gene expression studies and discuss the application of single-cell RNA sequencing, a high-throughput technique that has revolutionized transcriptomic analysis. We explore how single-cell RNA sequencing will enhance our knowledge of gene expression in conductive tissues.

3.
J Clin Oncol ; 41(5): 1116-1128, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36315919

RESUMEN

PURPOSE: Germline missense variants of unknown significance in cancer-related genes are increasingly being identified with the expanding use of next-generation sequencing. The ataxia telangiectasia-mutated (ATM) gene on chromosome 11 has more than 1,000 germline missense variants of unknown significance and is a tumor suppressor. We aimed to determine if rare germline ATM variants are more frequent in chronic lymphocytic leukemia (CLL) compared with other hematologic malignancies and if they influence the clinical characteristics of CLL. METHODS: We identified 3,128 patients (including 825 patients with CLL) in our hematologic malignancy clinic who had received clinical-grade sequencing of the entire coding region of ATM. We ascertained the comparative frequencies of germline ATM variants in categories of hematologic neoplasms, and, in patients with CLL, we determined whether these variants affected CLL-associated characteristics such as somatic 11q deletion. RESULTS: Rare germline ATM variants are present in 24% of patients with CLL, significantly greater than that in patients with other lymphoid malignancies (16% prevalence), myeloid disease (15%), or no hematologic neoplasm (14%). Patients with CLL with germline ATM variants are younger at diagnosis and twice as likely to have 11q deletion. The ATM variant p.L2307F is present in 3% of patients with CLL, is associated with a three-fold increase in rates of somatic 11q deletion, and is a hypomorph in cell-based assays. CONCLUSION: Germline ATM variants cluster within CLL and affect the phenotype of CLL that develops, implying that some of these variants (such as ATM p.L2307F) have functional significance and should not be ignored. Further studies are needed to determine whether these variants affect the response to therapy or account for some of the inherited risk of CLL.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Leucemia Linfocítica Crónica de Células B , Humanos , Ataxia Telangiectasia , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de Ciclo Celular/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/uso terapéutico , Proteínas Supresoras de Tumor/genética
4.
J Plant Res ; 136(1): 83-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36385674

RESUMEN

Norway maple and sycamore, two Acer genus species, have an important ecological value and different sensitivity to stressing factors being currently aggravated by climate change. Seedling growth is postulated to be the main barrier for successful plant establishment under the climate change scenarios. Therefore, the differences in redox regulation during the seedling performance of Norway maple and sycamore were investigated. Seeds of the two Acer species exhibited an identical high germination capacity, whereas seedling emergence was higher in sycamores. PCA analyses revealed that there is more diversification in the leaf characteristics than roots. Norway maple displayed a higher chlorophyll content index (CCI) with a similar leaf mass whereas sycamore seedlings exhibited a higher normalized difference vegetation index (NDVI), higher water content, higher root biomass and higher shoot height. Based on NDVI, sycamore seedlings appeared as very healthy plants, whereas Norway maple seedlings displayed a moderate healthy phenotype. Therefore, redox basis of seedling performance was investigated. The total pool of glutathione was four times higher in sycamore leaves than in Norway maple leaves and was reflected in highly reduced half-cell reduction potential of glutathione. Sycamore leaves contained more ascorbate because the content of its reduced form (AsA) was twice as high as in Norway maple. Therefore, the AsA/DHA ratio was balanced in sycamore leaves, reaching 1, and was halved in Norway maple leaves. Nicotinamide adenine dinucleotide phosphate content was twice as high in sycamore leaves than in Norway maples; however, its reduced form (NADPH) was predominant in Norway maple seedlings. Norway maple leaves exhibited the highest anabolic and catabolic redox charge. The higher reduction capacity and the activity of NADPH-dependent reductases in Norway maple leaves possibly resulted in higher CCI, whereas the larger root system contributed to higher NDVI in sycamore. The different methods of controlling redox parameters in Acer seedlings grown at controlled conditions provided here can be useful in understanding how tree species can cope with a changing environment in the future.


Asunto(s)
Acer , Plantones , Acer/química , Acer/fisiología , NADP/análisis , NADP/metabolismo , Oxidación-Reducción , Glutatión/metabolismo , Hojas de la Planta/metabolismo
5.
Antioxidants (Basel) ; 10(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34943124

RESUMEN

European beech is an important component of European lowland forests in terms of ecology, and produces irregular seeds categorized as intermediate due to their limited longevity. Removal of the excess of reactive oxygen species is crucial for redox homeostasis in growing plant tissues. Hydrogen peroxide (H2O2) is detoxified via the plant-specific ascorbate-glutathione cycle, and enzymatically, mainly by catalase (CAT). The reduced and oxidized (redox) forms of ascorbate (AsA, DHA) and glutathione (GSH, GSSG) decreased during maturation as the content of redox forms of nicotinamide adenine dinucleotide (NADH, NAD+) phosphate (NADPH, NADP+), cofactors of ascorbate-glutathione enzymes, declined and limited this cycle. The degree of oxidation of glutathione peaked at approximately 80%, at the exact time when the NADP content was the lowest and the NADPH/NADP+ ratio reached the highest values. The glutathione pool was reflected in changes in the NADP pool, both in embryonic axes (R2 = 0.61) and in cotyledons (R2 = 0.98). A large excess of NADPH was reported in embryonic axes, whereas cotyledons displayed more unified levels of NADP redox forms. As a result, anabolic redox charge and reducing power were higher in embryonic axes. CAT was recognized as two proteins, and the abundance of the 55 kDa protein was correlated with all redox forms of ascorbate, glutathione, NAD, and NADP, whereas the 37 kDa protein was oppositely regulated in embryonic axes and cotyledons. Here, we discuss the role of NAD(P) in the regulation of the ascorbate-glutathione cycle, catalase, and seed longevity concerning a putative role of NAD(P)H as a redox biomarker involved in predefining seed quality, because NAD(P)H-derived redox homeostasis was found to be better controlled in embryonic axes than cotyledons.

6.
Am J Pathol ; 191(11): 2009-2022, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34364880

RESUMEN

Myelodysplastic syndromes (MDS) are clonal neoplasms of the hematopoietic stem cell that result in aberrant differentiation of hematopoietic lineages caused by a wide range of underlying genetic, epigenetic, and other causes. Despite the myriad origins, a recognizable MDS phenotype has been associated with miRNA aberrant expression. A model of aberrant myeloid maturation that mimics MDS was generated using a stable knockdown of miR-378-3p. This model exhibited a transcriptional profile indicating aberrant maturation and function, immunophenotypic and morphologic dysplasia, and aberrant growth that characterizes MDS. Moreover, aberrant signal transduction in response to stimulation specific to the stage of myeloid maturation as indicated by CyTOF mass cytometry was similar to that found in samples from patients with MDS. The aberrant signaling, immunophenotypic changes, cellular growth, and colony formation ability seen in this myeloid model could be reversed with azacytidine, albeit without significant improvement of neutrophil function.


Asunto(s)
MicroARNs/genética , Síndromes Mielodisplásicos/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Técnicas de Silenciamiento del Gen , Células HL-60 , Humanos , Masculino , Persona de Mediana Edad
7.
Planta ; 254(1): 15, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34184131

RESUMEN

MAIN CONCLUSION: Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper development of root tissues as well as the senescence of the entire organ. Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as during plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tissue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future studies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure whether the analyzed process is autophagy-dependent or not.


Asunto(s)
Autofagia , Raíces de Plantas , Desarrollo de la Planta , Plantas
8.
PLoS One ; 16(1): e0245635, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33503034

RESUMEN

Seed germination is a complex process enabling plant reproduction. Germination was found to be regulated at the proteome, metabolome and hormonal levels as well as via discrete post-translational modification of proteins including phosphorylation and carbonylation. Redox balance is also involved but less studied. Acer seeds displaying orthodox and recalcitrant characteristics were investigated to determine the levels of redox couples of nicotinamide adenine dinucleotide (NAD) phosphate (NADP) and integrated with the levels of ascorbate and glutathione. NAD and NADP concentrations were higher in Norway maple seeds and exceptionally high at the germinated stage, being the most contrasting parameter between germinating Acer seeds. In contrast, NAD(P)H/NAD(P)+ ratios were higher in sycamore seeds, thus exhibiting higher reducing power. Despite distinct concentrations of ascorbate and glutathione, both seed types attained in embryonic axes and cotyledons had similar ratios of reduced/oxidized forms of ascorbate and half-cell reduction potential of glutathione at the germinated stage. Both species accomplished germination displaying different strategies to modulate redox status. Sycamore produced higher amounts of ascorbate and maintained pyridine nucleotides in reduced forms. Interestingly, lower NAD(P) concentrations limited the regeneration of ascorbate and glutathione but dynamically drove metabolic reactions, particularly in this species, and contributed to faster germination. We suggest that NAD(P) is an important player in regulating redox status during germination in a distinct manner in Norway maple and sycamore seeds.


Asunto(s)
Acer/metabolismo , Germinación/fisiología , NADP/metabolismo , NAD/metabolismo , Semillas/metabolismo , Oxidación-Reducción
9.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401671

RESUMEN

Beech seeds are produced irregularly, and there is a need for long-term storage of these seeds for forest management practices. Accumulated reactive oxygen species broadly oxidize molecules, including amino acids, such as methionine, thereby contributing to decreased seed viability. Methionine oxidation can be reversed by the activity of methionine sulfoxide reductases (Msrs), which are enzymes involved in the regulation of many developmental processes and stress responses. Two types of Msrs, MsrB1 and MsrB2, were investigated in beech seeds to determine their abundance and localization. MsrB1 and MsrB2 were detected in the cortical cells and the outer area of the vascular cylinder of the embryonic axes as well as in the epidermis and parenchyma cells of cotyledons. The abundances of MsrB1 and MsrB2 decreased during long-term storage. Ultrastructural analyses have demonstrated the accumulation of these proteins in protein storage vacuoles and in the cytoplasm, especially in close proximity to the cell membrane. In silico predictions of possible Msr interactions supported our findings. In this study, we investigate the contribution of MsrB1 and MsrB2 locations in the regulation of seed viability and suggest that MsrB2 is linked with the longevity of beech seeds via association with proper utilization of storage material.


Asunto(s)
Cotiledón/metabolismo , Fagus/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Supervivencia Celular/fisiología , Biología Computacional , Cotiledón/citología , Fagus/citología , Fagus/embriología , Fagus/crecimiento & desarrollo , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Unión Proteica , Semillas/citología , Semillas/enzimología
10.
Antioxidants (Basel) ; 9(12)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33316974

RESUMEN

Two related tree species, Norway maple (Acer platanoides L.) and sycamore (Acer pseudoplatanus L.), produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. We compared the seeds of these two species to characterize the developmentally driven changes in the levels of peptide-bound methionine sulfoxide (MetO) and the abundance of methionine sulfoxide reductases (Msrs) B1 and B2, with respect to the cellular redox environment. Protein oxidation at the Met level was dynamic only in Norway maple seeds, and the reduced MsrB2 form was detected only in this species. Cell redox status, characterized by the levels of reduced and oxidized ascorbate, glutathione, and nicotinamide adenine dinucleotide (NAD)/phosphate (NADP), was clearly more reduced in the Norway maple seeds than in the sycamore seeds. Clear correlations between MetO levels, changes in water content and redox status were reported in orthodox Acer seeds. The abundance of Msrs was correlated in both species with redox determinants, mainly ascorbate and glutathione. Our data suggest that MsrB2 is associated with the acquisition of desiccation tolerance and that ascorbate might be involved in the redox pathway enabling the regeneration of Msr via intermediates that are not known yet.

11.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276642

RESUMEN

The levels of methionine sulfoxide (MetO) and the abundances of methionine sulfoxide reductases (Msrs) were reported as important for the desiccation tolerance of Acer seeds. To determine whether the MetO/Msrs system is related to reactive oxygen species (ROS) and involved in the regulation of germination in orthodox and recalcitrant seeds, Norway maple and sycamore were investigated. Changes in water content, MetO content, the abundance of MsrB1 and MsrB2 in relation to ROS content and the activity of reductases depending on nicotinamide adenine dinucleotides were monitored. Acer seeds differed in germination speed-substantially higher in sycamore-hydration dynamics, levels of hydrogen peroxide, superoxide anion radicals (O2•-) and hydroxyl radicals (•OH), which exhibited peaks at different stages of germination. The MetO level dynamically changed, particularly in sycamore embryonic axes, where it was positively correlated with the levels of O2•- and the abundance of MsrB1 and negatively with the levels of •OH and the abundance of MsrB2. The MsrB2 abundance increased upon sycamore germination; in contrast, it markedly decreased in Norway maple. We propose that the ROS-MetO-Msr redox system, allowing balanced Met redox homeostasis, participates in the germination process in sycamore, which is characterized by a much higher speed compared to Norway maple.


Asunto(s)
Acer/fisiología , Germinación , Metionina Sulfóxido Reductasas/metabolismo , Metionina/análogos & derivados , Metionina/metabolismo , NADP/metabolismo , Oxidación-Reducción , Desarrollo de la Planta/genética , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo , Agua/metabolismo
12.
Antioxidants (Basel) ; 9(5)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392756

RESUMEN

Norway maple and sycamore produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. Drying affects reduction and oxidation (redox) status in seeds. Oxidation of methionine to methionine sulfoxide (MetO) and reduction via methionine sulfoxide reductases (Msrs) have never been investigated in relation to seed desiccation tolerance. MetO levels and the abundance of Msrs were investigated in relation to levels of reactive oxygen species (ROS) such as hydrogen peroxide, superoxide anion radical and hydroxyl radical (•OH), and the levels of ascorbate and glutathione redox couples in gradually dried seeds. Peptide-bound MetO levels were positively correlated with ROS concentrations in the orthodox seeds. In particular, •OH affected MetO levels as well as the abundance of MsrB2 solely in the embryonic axes of Norway maple seeds. In this species, MsrB2 was present in oxidized and reduced forms, and the latter was favored by reduced glutathione and ascorbic acid. In contrast, sycamore seeds accumulated higher ROS levels. Additionally, MsrB2 was oxidized in sycamore throughout dehydration. In this context, the three elements •OH level, MetO content and MsrB2 abundance, linked together uniquely to Norway maple seeds, might be considered important players of the redox network associated with desiccation tolerance.

13.
Plant Cell Physiol ; 61(6): 1158-1167, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267948

RESUMEN

Desiccation tolerance is a developmental program enabling seed survival in a dry state and is common in seeds categorized as orthodox. We focused on NAD and its phosphorylated form (NADP) because their continual switching between reduced (NAD(P)H) and oxidized (NAD(P)+) forms is involved in the modulation of redox signaling and the determination of the reducing power and further antioxidant responses. Norway maple and sycamore seeds representing the orthodox and recalcitrant categories, respectively, were used as models in a comparison of responses to water loss. The process of desiccation up to 10% water content (WC) was monitored in Norway maple seeds, while dehydration up to 30% WC was monitored in desiccation-sensitive sycamore seeds. Norway maple and sycamore seeds, particularly their embryonic axes, exhibited a distinct redox status during dehydration and desiccation. High NADPH levels, NAD+ accumulation, low and stable NAD(P)H/NAD(P)+ ratios expressed as reducing power and high NADPH-dependent enzyme activity were reported in Norway maple seeds and were considered attributes of orthodox-type seeds. The contrasting results of sycamore seeds contributed to their low antioxidant capacity and high sensitivity to desiccation. NADPH deficiency, low NADPH-dependent enzyme activity and lack of NAD+ accumulation were primary features of sycamore seeds, with implications for their NAD(P)H/NAD(P)+ ratios and reducing power and with effects on many seed traits. Thus, we propose that the distinct levels of pyridine nucleotides and their redox status contribute to orthodox and recalcitrant phenotype differentiation in seeds by affecting cellular redox signaling, metabolism and the antioxidant system.


Asunto(s)
Acer/metabolismo , NADP/metabolismo , Oxidación-Reducción , Semillas/metabolismo , Acer/fisiología , Deshidratación , NADP/fisiología , Semillas/fisiología
14.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192046

RESUMEN

Plant senescence is a highly regulated process that allows nutrients to be mobilized from dying tissues to other organs. Despite that senescence has been extensively studied in leaves, the senescence of ephemeral organs located underground is still poorly understood, especially in the context of phytohormone engagement. The present study focused on filling this knowledge gap by examining the roles of abscisic acid (ABA) and jasmonate in the regulation of senescence of fine, absorptive roots and leaves of Populus trichocarpa. Immunohistochemical (IHC), chromatographic, and molecular methods were utilized to achieve this objective. A transcriptomic analysis identified significant changes in gene expression that were associated with the metabolism and signal transduction of phytohormones, especially ABA and jasmonate. The increased level of these phytohormones during senescence was detected in both organs and was confirmed by IHC. Based on the obtained data, we suggest that phytohormonal regulation of senescence in roots and leaves is organ-specific. We have shown that the regulation of ABA and JA metabolism is tightly regulated during senescence processes in both leaves and roots. The results were discussed with respect to the role of ABA in cold tolerance and the role of JA in resistance to pathogens.


Asunto(s)
Ácido Abscísico/metabolismo , Envejecimiento/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Populus/metabolismo , Envejecimiento/genética , Biología Computacional/métodos , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Anotación de Secuencia Molecular , Fenotipo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Raíces de Plantas/genética , Populus/genética
15.
Antioxidants (Basel) ; 9(3)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120843

RESUMEN

In contrast to aboveground organs (stems and leaves), developmental events and their regulation in underground organs, such as pioneer and fine roots, are quite poorly understood. The objective of the current study was to achieve a better understanding of the physiological and molecular role of reactive oxygen species (ROS) and ROS-related enzymes in the process of stem and pioneer root development in black cottonwood (Populus trichocarpa), as well as in the senescence of leaves and fine roots. Results of a transcriptomic analysis revealed that primary/secondary growth and senescence are accompanied by substantial changes in the expression of genes related to oxidative stress metabolism. We observed that some mechanisms common for above- and under-ground organs, e.g., the expression of superoxide dismutase (SOD) genes and SOD activity, declined during stems' and pioneer roots' development. Moreover, the localization of hydrogen peroxide (H2O2) and superoxide (O2•-) in the primary and secondary xylem of stems and pioneer roots confirms their involvement in xylem cell wall lignification and the induction of programmed cell death (PCD). H2O2 and O2•- in senescing fine roots were present in the same locations as demonstrated previously for ATG8 (AuTophaGy-related) proteins, implying their participation in cell degradation during senescence, while O2•- in older leaves was also localized similarly to ATG8 in chloroplasts, suggesting their role in chlorophagy. ROS and ROS-related enzymes play an integral role in the lignification of xylem cell walls in Populus trichocarpa, as well as the induction of PCD during xylogenesis and senescence.

16.
Tree Physiol ; 40(8): 987-1000, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32091108

RESUMEN

The remobilization and resorption of plant nutrients is considered as a crucial aspect of the seasonal senescence of plant organs. In leaves, the mechanisms responsible for the relocation of valuable compounds are well understood while the related processes in roots are still being debated. Some research indicates that remobilization in roots occurs, while other studies have not found evidence of this process. Considering that the total biomass of fine roots is equal to or greater than that of leaves, clarifying the conflicting reports and ambiguities may provide critical information on the circulation of chemical elements in forest ecosystems. This study provides new information concerning the basis for remobilization processes in roots by combining physiological data with gene expression and protein levels. We suggest that, as in leaves, molecular mechanisms involved in nitrogen (N) resorption are also activated in senescent roots. An analysis of N concentration indicated that N levels decreased during the senescence of both organs. The decrease was associated with an increase in the expression of a glutamine synthetase (GS) gene and a concomitant elevation in the amount of GS-one of the most important enzymes in N metabolism. In addition, significant accumulation of carbohydrates was observed in fine roots, which may represent an adaptation to unfavorable weather conditions that would allow remobilization to occur rather than a rapid death in response to ground frost or cold. Our results provide new insights into the senescence of plant organs and clarify contentious topics related to the remobilization process in fine roots.


Asunto(s)
Populus/genética , Ecosistema , Nitrógeno , Hojas de la Planta , Raíces de Plantas , Estaciones del Año
17.
Antioxidants (Basel) ; 8(12)2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31847411

RESUMEN

Reactive oxygen species (ROS) are constantly produced by metabolically active plant cells. The concentration of ROS may determine their role, e.g., they may participate in signal transduction or cause oxidative damage to various cellular components. To ensure cellular homeostasis and minimize the negative effects of excess ROS, plant cells have evolved a complex antioxidant system, which includes ascorbic acid (AsA). AsA is a multifunctional metabolite with strong reducing properties that allows the neutralization of ROS and the reduction of molecules oxidized by ROS in cooperation with glutathione in the Foyer-Halliwell-Asada cycle. Antioxidant enzymes involved in AsA oxidation and reduction switches evolved uniquely in plants. Most experiments concerning the role of AsA have been performed on herbaceous plants. In addition to extending our understanding of this role in additional taxa, fundamental knowledge of the complex life cycle stages of woody plants, including their development and response to environmental factors, will enhance their breeding and amend their protection. Thus, the role of AsA in woody plants compared to that in nonwoody plants is the focus of this paper. The role of AsA in woody plants has been studied for nearly 20 years. Studies have demonstrated that AsA is important for the growth and development of woody plants. Substantial changes in AsA levels, as well as reduction and oxidation switches, have been reported in various physiological processes and transitions described mainly in leaves, fruits, buds, and seeds. Evidently, AsA exhibits a dual role in the photoprotection of the photosynthetic apparatus in woody plants, which are the most important scavengers of ozone. AsA is associated with proper seed production and, thus, woody plant reproduction. Similarly, an important function of AsA is described under drought, salinity, temperature, light stress, and biotic stress. This report emphasizes the involvement of AsA in the ecological advantages, such as nutrition recycling due to leaf senescence, of trees and shrubs compared to nonwoody plants.

18.
Front Plant Sci ; 10: 1419, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781142

RESUMEN

Regulation of gene expression, as determined by the genetics of the tree species, is a major factor in determining wood quality. Therefore, the identification of genes that play a role in xylogenesis is extremely important for understanding the mechanisms shaping the plant phenotype. Efforts to develop new varieties characterized by higher yield and better wood quality will greatly benefit from recognizing and understanding the complex transcriptional network underlying wood development. The present study provides a detailed comparative description of the changes that occur in genes transcription and the biosynthesis of cell-wall-related compounds during xylogenesis in Populus trichocarpa pioneer roots and stems. Even though results of microarray analysis indicated that only approximately 10% of the differentially expressed genes were common to both organs, many fundamental mechanisms were similar; e.g. the pattern of expression of genes involved in the biosynthesis of cell wall proteins, polysaccharides, and lignins. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) shows that the composition of monosaccharides was also very similar, with an increasing amount of xylose building secondary cell wall hemicellulose and pectins, especially in the stems. While hemicellulose degradation was typical for stems, possibly due to the intensive level of cell wall lignification. Notably, the main component of lignins in roots were guiacyl units, while syringyl units were dominant in stems, where fibers are especially needed for support. Our study is the first comprehensive analysis, at the structural and molecular level, of xylogenesis in under- and aboveground tree parts, and clearly reveals the great complexity of molecular mechanisms underlying cell wall formation and modification during xylogenesis in different plant organs.

19.
Planta ; 250(6): 1789-1801, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31451904

RESUMEN

MAIN CONCLUSION: Autophagy is involved in developmentally programmed cell death and is identified during the early development of phloem, as well as xylem with a dual role, as both an inducer and executioner of cell death. The regulation of primary and secondary development of roots and stems is important for the establishment of root systems and for the overall survival of trees. The molecular and cellular basis of the autophagic processes, which are used at distinct moments during the growth of both organs, is crucial to understand the regulation of their development. To address this, we use Populus trichocarpa seedlings grown in a rhizotron system to examine the autophagy processes involved in root and stem development. To monitor the visual aspects of autophagy, transmission electron microscopy (TEM) and immunolocalization of AuTophaGy-related protein (ATG8) enabled observations of the phenomenon at a structural level. To gain further insight into the autophagy process at the protein and molecular level, we evaluated the expression of ATG gene transcripts and ATG protein levels. Alternations in the expression level of specific ATG genes and localization of ATG8 proteins were observed during the course of root or stem primary and secondary development. Specifically, ATG8 was present in the cells exhibiting autophagy, during the differentiation and early development of xylem and phloem tissues, including both xylary and extraxylary fibers. Ultrastructural observations revealed tonoplast invagination with the formation of autophagic-like bodies. Additionally, the accumulation of autophagosomes was identifiable during the differentiation of xylem in both organs, long before the commencement of cell death. Taken together, these results provide evidence in support of the dual role of autophagy in developmental PCD. A specific role of the controller of cell death, which is a committed step with the release of hydrolytic enzymes from the vacuole and final digestion of protoplast, from which there is no return once initiated, is only attributed to mega-autophagy.


Asunto(s)
Autofagia/fisiología , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Electroforesis en Gel Bidimensional , Técnica del Anticuerpo Fluorescente , Expresión Génica , Microscopía Electrónica de Transmisión , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Populus/metabolismo , Populus/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/crecimiento & desarrollo
20.
BMC Plant Biol ; 18(1): 260, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30373512

RESUMEN

BACKGROUND: Senescence, despite its destructive character, is a process that is precisely-regulated. The control of senescence is required to achieve remobilization of resources, a principle aspect of senescence. Remobilization allows plants to recapture valuable resources that would otherwise be lost to the environment with the senescing organ. Autophagy is one of the critical processes that is switched on during senescence. This evolutionarily conserved process plays dual, antagonistic roles. On the one hand, it counteracts instantaneous cell death and allows the process of remobilization to be set in motion, while on the other hand, it participates in the degradation of cellular components. Autophagy has been demonstrated to occur in many plant species during the senescence of leaves and flower petals. Little is known, however, about the senescence process in other ephemeral organs, such as fine roots, whose lifespan is also relatively short. We hypothesized that, like the case of seasonal leaf senescence, autophagy also plays a role in the senescence of fine roots, and that both processes are synchronized in their timing. RESULTS: We evaluated which morphological and cytological symptoms are universal or unique in the senescence of fine roots and leaves. The results of our study confirmed that autophagy plays a key role in the senescence of fine roots, and is associated also with the process of cellular components degradation. In both organs, structures related to autophagy were observed, such as autophagic bodies and autophagosomes. The role of autophagy in the senescence of these plant organs was further confirmed by an analysis of ATG gene expression and protein detection. CONCLUSIONS: The present study is the first one to examine molecular mechanisms associated with the senescence of fine roots, and provide evidence that can be used to determine whether senescence of fine roots can be treated as another example of developmentally programmed cell death (dPCD). Our results indicate that there is a strong similarity between the senescence of fine roots and other ephemeral organs, suggesting that this process occurs by the same autophagy-related mechanisms in all plant ephemeral organs.


Asunto(s)
Autofagia/fisiología , Hojas de la Planta/citología , Raíces de Plantas/citología , Populus/citología , Populus/fisiología , Supervivencia Celular , Regulación de la Expresión Génica de las Plantas , Células Vegetales/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...