Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 24(5): e202200684, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36548247

RESUMEN

The gene cluster in Streptomyces calvus associated with the biosynthesis of the fluoro- and sulfamyl-metabolite nucleocidin was interrogated by systematic gene knockouts. Out of the 26 gene deletions, most did not affect fluorometabolite production, nine abolished sulfamylation but not fluorination, and three precluded fluorination, but had no effect on sulfamylation. In addition to nucI, nucG, nucJ, nucK, nucL, nucN, nucO, nucQ and nucP, we identified two genes (nucW, nucA), belonging to a phosphoadenosine phosphosulfate (PAPS) gene cluster, as required for sulfamyl assembly. Three genes (orf(-3), orf2 and orf3) were found to be essential for fluorination, although the activities of their protein products are unknown. These genes as well as nucK, nucN, nucO and nucPNP, whose knockouts produced results differing from those described in a recent report, were also deleted in Streptomyces virens - with confirmatory outcomes. This genetic profile should inform biochemistry aimed at uncovering the enzymology behind nucleocidin biosynthesis.


Asunto(s)
Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Familia de Multigenes
2.
J Med Chem ; 65(3): 1898-1914, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35104933

RESUMEN

RAS is a major anticancer drug target which requires membrane localization to activate downstream signal transduction. The direct inhibition of RAS has proven to be challenging. Here, we present a novel strategy for targeting RAS by stabilizing its interaction with the prenyl-binding protein PDE6D and disrupting its localization. Using rationally designed RAS point mutations, we were able to stabilize the RAS:PDE6D complex by increasing the affinity of RAS for PDE6D, which resulted in the redirection of RAS to the cytoplasm and the primary cilium and inhibition of oncogenic RAS/ERK signaling. We developed an SPR fragment screening and identified fragments that bind at the KRAS:PDE6D interface, as shown through cocrystal structures. Finally, we show that the stoichiometric ratios of KRAS:PDE6D vary in different cell lines, suggesting that the impact of this strategy might be cell-type-dependent. This study forms the foundation from which a potential anticancer small-molecule RAS:PDE6D complex stabilizer could be developed.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/análisis , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
3.
Org Biomol Chem ; 19(46): 10081-10084, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34779476

RESUMEN

Genome homology and the presence of a putative biosynthetic gene cluster identified Streptomyces aureorectus DSM 41692 and Streptomyces virens DSM 41465 as candidate producers of the antibiotic nucleocidin 1. Indeed when these bacterial strains were cultured in a medium supplemented with fluoride (4 mM) they each produced nucleocidin 1 and the previously identified 4'-fluoro-3'-O-ß-glucosylated adenosine 2 and its sulfamylated derivative 3. In both of these cases 4'-fluoroadenosine 9 is also identified as a natural product although it has never been observed during fermentations of Streptomyces calvus, the original source of nucleocidin 1. The identity of 4'-fluoroadenosine 9 was confirmed by a total synthesis as well as by its in vitro enzymatic conversion to metabolite 2 using the glucosyl transferase enzyme, NucGT.


Asunto(s)
Adenosina/análogos & derivados , Antibacterianos/biosíntesis , Streptomyces/metabolismo , Adenosina/biosíntesis , Adenosina/química , Antibacterianos/química , Estructura Molecular , Filogenia , Espectroscopía de Protones por Resonancia Magnética , Streptomyces/clasificación
4.
mBio ; 11(5)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109756

RESUMEN

Phytopathogenic Pectobacterium spp. import ferredoxin into the periplasm for proteolytic processing and iron release via the ferredoxin uptake system. Although the ferredoxin receptor FusA and the processing protease FusC have been identified, the mechanistic basis of ferredoxin import is poorly understood. In this work, we demonstrate that protein translocation across the outer membrane is dependent on the TonB-like protein FusB. In contrast to the loss of FusC, loss of FusB or FusA abolishes ferredoxin transport to the periplasm, demonstrating that FusA and FusB work in concert to transport ferredoxin across the outer membrane. In addition to an interaction with the "TonB box" region of FusA, FusB also forms a complex with the ferredoxin substrate, with complex formation required for substrate transport. These data suggest that ferredoxin transport requires energy transduction from the cytoplasmic membrane via FusB both for removal of the FusA plug domain and for substrate translocation through the FusA barrel.IMPORTANCE The ability to acquire iron is key to the ability of bacteria to cause infection. Plant-pathogenic Pectobacterium spp. are able to acquire iron from plants by transporting the iron-containing protein ferredoxin into the cell from proteolytic processing. In this work, we show that the TonB-like protein FusB plays a key role in transporting ferredoxin across the bacterial outer membrane by directly energizing its transport into the cell. The direct interaction of the TonB-like protein with substrate is unprecedented and explains the requirement for the system-specific TonB homologue in the ferredoxin uptake system. Since multiple genes encoding TonB-like proteins are commonly found in the genomes of Gram-negative bacteria, this may be a common mechanism for the uptake of atypical substrates via TonB-dependent receptors.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ferredoxinas/metabolismo , Pectobacterium/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Proteínas Portadoras/metabolismo , Hierro/metabolismo , Pectobacterium/genética , Transporte de Proteínas
5.
Microbiol Resour Announc ; 8(31)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371540

RESUMEN

Here, we report the draft genome sequence of Pectobacterium carotovorum subsp. carotovorum strain LMG 2410, isolated from cucumber in the United Kingdom. The draft genome is 4,773,000 bp, with a G+C content of 51.9%, and carries a total of 4,536 coding sequences.

6.
Proc Natl Acad Sci U S A ; 115(26): 6840-6845, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891657

RESUMEN

Iron is an essential micronutrient for most bacteria and is obtained from iron-chelating siderophores or directly from iron-containing host proteins. For Gram-negative bacteria, classical iron transport systems consist of an outer membrane receptor, a periplasmic binding protein, and an inner membrane ABC transporter, which work in concert to deliver iron from the cell surface to the cytoplasm. We recently showed that Pectobacterium spp. are able to acquire iron from ferredoxin, a small and stable 2Fe-2S iron sulfur cluster containing protein and identified the ferredoxin receptor, FusA, a TonB-dependent receptor that binds ferredoxin on the cell surface. The genetic context of fusA suggests an atypical iron acquisition system, lacking a periplasmic binding protein, although the mechanism through which iron is extracted from the captured ferredoxin has remained unknown. Here we show that FusC, an M16 family protease, displays a highly targeted proteolytic activity against plant ferredoxin, and that growth enhancement of Pectobacterium due to iron acquisition from ferredoxin is FusC-dependent. The periplasmic location of FusC indicates a mechanism in which ferredoxin is imported into the periplasm via FusA before cleavage by FusC, as confirmed by the uptake and accumulation of ferredoxin in the periplasm in a strain lacking fusC The existence of homologous uptake systems in a range of pathogenic bacteria suggests that protein uptake for nutrient acquisition may be widespread in bacteria and shows that, similar to their endosymbiotic descendants mitochondria and chloroplasts, bacteria produce dedicated protein import systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Pectobacterium/metabolismo , Factor G de Elongación Peptídica/metabolismo , Proteolisis , Proteínas Bacterianas/genética , Membrana Celular/genética , Proteínas de la Membrana/genética , Pectobacterium/genética , Factor G de Elongación Peptídica/genética , Periplasma/genética , Periplasma/metabolismo
7.
Biochemistry ; 57(10): 1663-1671, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29460615

RESUMEN

The twin arginine translocation (Tat) system moves folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Signal peptide-bearing substrates of the Tat pathway (precursor proteins) are recognized at the membrane by the TatBC receptor complex. The only established preparation of the TatBC complex uses the detergent digitonin, rendering it unsuitable for biophysical analysis. Here we show that the detergent glyco-diosgenin (GDN) can be used in place of digitonin to isolate homogeneous TatBC complexes that bind precursor proteins with physiological specificity. We use this new preparation to quantitatively characterize TatBC-precursor interactions in a fully defined system. Additionally, we show that the GDN-solubilized TatBC complex co-purifies with substantial quantities of phospholipids.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Cromatografía de Fase Inversa , Detergentes/química , Diosgenina/química , Proteínas de Escherichia coli/aislamiento & purificación , Espectrometría de Masas , Proteínas de Transporte de Membrana/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida Nativa , Resonancia por Plasmón de Superficie
8.
Chem Biol ; 20(11): 1411-20, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24210218

RESUMEN

In a commonly accepted model, in response to stimuli, bacterial histidine kinases undergo a conformational transition between an active and inactive form. Structural information on histidine kinases is limited. By using ion mobility-mass spectrometry (IM-MS), we demonstrate an exchange between two conformational populations of histidine kinase ExsG that are linked to different levels of kinase activity. ExsG is an atypical signaling protein that incorporates an uncommon histidine kinase catalytic core at the C terminus preceded by an N-terminal "receiver domain" that is normally associated with the response regulator proteins in two-component signal transduction systems. IM-MS analysis and enzymatic assays indicate that phosphorylation of the ExsG receiver domain stabilizes the "compact" form of the protein and inhibits kinase core activity; in contrast, nucleotide binding required for kinase activity is associated with the more open conformation of ExsG.


Asunto(s)
Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Histidina Quinasa , Espectrometría de Masas , Fosforilación , Conformación Proteica , Proteínas Quinasas/genética , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...