Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37827155

RESUMEN

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Asunto(s)
Proteína de Replicación A , Expansión de Repetición de Trinucleótido , Animales , Humanos , Ratones , ADN/genética , Reparación de la Incompatibilidad de ADN , Enfermedad de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelosas/genética , Proteína de Replicación A/metabolismo
2.
Nat Commun ; 13(1): 3743, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768435

RESUMEN

Perturbation in the replication-stress response (RSR) and DNA-damage response (DDR) causes genomic instability. Genomic instability occurs in Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency disorder, yet the mechanism remains largely uncharacterized. Replication protein A (RPA), a single-strand DNA (ssDNA) binding protein, has key roles in the RSR and DDR. Here we show that human WAS-protein (WASp) modulates RPA functions at perturbed replication forks (RFs). Following genotoxic insult, WASp accumulates at RFs, associates with RPA, and promotes RPA:ssDNA complexation. WASp deficiency in human lymphocytes destabilizes RPA:ssDNA-complexes, impairs accumulation of RPA, ATR, ETAA1, and TOPBP1 at genotoxin-perturbed RFs, decreases CHK1 activation, and provokes global RF dysfunction. las17 (yeast WAS-homolog)-deficient S. cerevisiae also show decreased ScRPA accumulation at perturbed RFs, impaired DNA recombination, and increased frequency of DNA double-strand break (DSB)-induced single-strand annealing (SSA). Consequently, WASp (or Las17)-deficient cells show increased frequency of DSBs upon genotoxic insult. Our study reveals an evolutionarily conserved, essential role of WASp in the DNA stress-resolution pathway, such that WASp deficiency provokes RPA dysfunction-coupled genomic instability.


Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Cadena Simple , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Proteína del Síndrome de Wiskott-Aldrich , Animales , Antígenos de Superficie/metabolismo , Reparación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Unión Proteica , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
3.
Blood ; 139(7): 1039-1051, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34767620

RESUMEN

Human telomere biology disorders (TBD)/short telomere syndromes (STS) are heterogeneous disorders caused by inherited loss-of-function mutations in telomere-associated genes. Here, we identify 3 germline heterozygous missense variants in the RPA1 gene in 4 unrelated probands presenting with short telomeres and varying clinical features of TBD/STS, including bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopenia, pulmonary fibrosis, or skin manifestations. All variants cluster to DNA-binding domain A of RPA1 protein. RPA1 is a single-strand DNA-binding protein required for DNA replication and repair and involved in telomere maintenance. We showed that RPA1E240K and RPA1V227A proteins exhibit increased binding to single-strand and telomeric DNA, implying a gain in DNA-binding function, whereas RPA1T270A has binding properties similar to wild-type protein. To study the mutational effect in a cellular system, CRISPR/Cas9 was used to knock-in the RPA1E240K mutation into healthy inducible pluripotent stem cells. This resulted in severe telomere shortening and impaired hematopoietic differentiation. Furthermore, in patients with RPA1E240K, we discovered somatic genetic rescue in hematopoietic cells due to an acquired truncating cis RPA1 mutation or a uniparental isodisomy 17p with loss of mutant allele, coinciding with stabilized blood counts. Using single-cell sequencing, the 2 somatic genetic rescue events were proven to be independently acquired in hematopoietic stem cells. In summary, we describe the first human disease caused by germline RPA1 variants in individuals with TBD/STS.


Asunto(s)
Trastornos de Fallo de la Médula Ósea/patología , Mutación con Ganancia de Función , Heterocigoto , Síndromes Mielodisplásicos/patología , Proteína de Replicación A/genética , Acortamiento del Telómero , Telómero/genética , Adolescente , Adulto , Trastornos de Fallo de la Médula Ósea/etiología , Trastornos de Fallo de la Médula Ósea/metabolismo , Diferenciación Celular , Niño , Femenino , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/etiología , Síndromes Mielodisplásicos/metabolismo , Adulto Joven
4.
Nat Genet ; 52(2): 146-159, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32060489

RESUMEN

In many repeat diseases, such as Huntington's disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSß. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Naftiridinas/farmacología , Quinolonas/farmacología , Expansión de Repetición de Trinucleótido/efectos de los fármacos , Animales , Cuerpo Estriado/efectos de los fármacos , ADN/metabolismo , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Transgénicos , Inestabilidad de Microsatélites , Mutación , Ribonucleasas/metabolismo , Proteína de Unión a TATA-Box/genética , Transcripción Genética
5.
Nat Struct Mol Biol ; 26(2): 129-136, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30723327

RESUMEN

Replication protein A (RPA) coordinates important DNA metabolic events by stabilizing single-stranded DNA (ssDNA) intermediates, activating the DNA-damage response and handing off ssDNA to the appropriate downstream players. Six DNA-binding domains (DBDs) in RPA promote high-affinity binding to ssDNA yet also allow RPA displacement by lower affinity proteins. We generated fluorescent versions of Saccharomyces cerevisiae RPA and visualized the conformational dynamics of individual DBDs in the context of the full-length protein. We show that both DBD-A and DBD-D rapidly bind to and dissociate from ssDNA while RPA remains bound to ssDNA. The recombination mediator protein Rad52 selectively modulates the dynamics of DBD-D. These findings reveal how RPA-interacting proteins with lower ssDNA binding affinities can access the occluded ssDNA and remodel individual DBDs to replace RPA.


Asunto(s)
Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína de Replicación A/química , Saccharomyces cerevisiae/genética
6.
Nucleic Acids Res ; 46(12): 6238-6256, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29788478

RESUMEN

Fanconi Anemia (FA) is characterized by bone marrow failure, congenital abnormalities, and cancer. Of over 20 FA-linked genes, FANCJ uniquely encodes a DNA helicase and mutations are also associated with breast and ovarian cancer. fancj-/- cells are sensitive to DNA interstrand cross-linking (ICL) and replication fork stalling drugs. We delineated the molecular defects of two FA patient-derived FANCJ helicase domain mutations. FANCJ-R707C was compromised in dimerization and helicase processivity, whereas DNA unwinding by FANCJ-H396D was barely detectable. DNA binding and ATP hydrolysis was defective for both FANCJ-R707C and FANCJ-H396D, the latter showing greater reduction. Expression of FANCJ-R707C or FANCJ-H396D in fancj-/- cells failed to rescue cisplatin or mitomycin sensitivity. Live-cell imaging demonstrated a significantly compromised recruitment of FANCJ-R707C to laser-induced DNA damage. However, FANCJ-R707C expressed in fancj-/- cells conferred resistance to the DNA polymerase inhibitor aphidicolin, G-quadruplex ligand telomestatin, or DNA strand-breaker bleomycin, whereas FANCJ-H396D failed. Thus, a minimal threshold of FANCJ catalytic activity is required to overcome replication stress induced by aphidicolin or telomestatin, or to repair bleomycin-induced DNA breakage. These findings have implications for therapeutic strategies relying on DNA cross-link sensitivity or heightened replication stress characteristic of cancer cells.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Afidicolina/toxicidad , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Pollos , Cisplatino/toxicidad , ADN de Cadena Simple , Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , G-Cuádruplex , Mutación Missense , Oxazoles/toxicidad , ARN Helicasas/química , Recombinasa Rad51/análisis , Recombinasas/genética , Recombinasas/metabolismo , Proteína de Replicación A/metabolismo , Estrés Fisiológico
7.
Biochim Biophys Acta Gen Subj ; 1862(6): 1482-1491, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29550431

RESUMEN

BACKGROUND: Expansion of the C9orf72 hexanucleotide repeat (GGGGCC)n·(GGCCCC)n is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both strands of the C9orf72 repeat have been shown to form unusual DNA and RNA structures that are thought to be involved in mutagenesis and/or pathogenesis. We previously showed that the C-rich DNA strands from the C9orf72 repeat can form four-stranded quadruplexes at neutral pH. The cytosine residues become protonated under slightly acidic pH (pH 4.5-6.2), facilitating the formation of intercalated i-motif structures. METHODS: Using CD spectroscopy, UV melting, and gel electrophoresis, we demonstrate a pH-induced structural transition of the C-rich DNA strand of the C9orf72 repeat at pHs reported to exist in living cells under stress, including during neurodegeneration and cancer. RESULTS: We show that the repeats with lengths of 4, 6, and 8 units, form intercalated quadruplex i-motifs at low pH (pH < 5) and monomolecular hairpins and monomolecular quadruplexes under neutral-basic conditions (pH ≥ 8). Furthermore, we show that the human replication protein A (RPA) binds to the G-rich and C-rich DNA strands under acidic conditions, suggesting that it can bind to i-motif structures. CONCLUSIONS: In the proper sequence context, i-motif structures can form at pH values found in some cells in vivo. GENERAL SIGNIFICANCE: DNA conformational plasticity exists over broad range of solution conditions.


Asunto(s)
Ácidos/química , Proteína C9orf72/química , Citosina/química , Expansión de las Repeticiones de ADN , G-Cuádruplex , Estrés Fisiológico , Humanos , Concentración de Iones de Hidrógeno , Conformación de Ácido Nucleico
8.
Methods Enzymol ; 600: 439-461, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29458769

RESUMEN

Replication protein A (RPA) is a highly conserved, eukaryotic ssDNA-binding protein essential for genome stability. RPA interacts with ssDNA and with protein partners to coordinate DNA replication, repair, and recombination. Single-molecule analysis of RPA-DNA interactions is leading to a better understanding of the molecular interactions and dynamics responsible for RPA function in cells. Here, we first describe how to express, purify, and label RPA. We then describe how to prepare materials and carry out single-molecule experiments examining RPA-DNA interactions using total internal reflection fluorescence microscopy (TIRFM). Finally, the last section describes how to analyze TIRFM data. This chapter will focus on human RPA. However, these methods can be applied to RPA homologs from other species.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína de Replicación A/metabolismo , Imagen Individual de Molécula/métodos , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Reparación del ADN por Recombinación , Proteína de Replicación A/química , Proteína de Replicación A/aislamiento & purificación , Imagen Individual de Molécula/instrumentación , Coloración y Etiquetado/métodos , Grabación en Video/instrumentación , Grabación en Video/métodos
9.
Mol Cell ; 65(2): 272-284, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28107649

RESUMEN

The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Elementos de Facilitación Genéticos , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas , Proteína de Replicación A/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Sitios de Unión , Proteínas de Ciclo Celular/genética , Cromatina/genética , ADN/genética , Proteínas de Unión al ADN/genética , Fase G1 , Células HEK293 , Células HeLa , Chaperonas de Histonas/genética , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Proteína de Replicación A/genética , Factores de Transcripción/genética , Transfección
10.
Nucleic Acids Res ; 44(12): 5758-72, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27131385

RESUMEN

Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA-DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/genética , Recombinasa Rad51/genética , Proteínas Recombinantes de Fusión/genética , Proteína de Replicación A/genética , Sitios de Unión , Clonación Molecular , Roturas del ADN de Cadena Simple , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Simulación de Dinámica Molecular , Mutación , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Recombinasa Rad51/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Replicación A/química , Proteína de Replicación A/metabolismo , Imagen Individual de Molécula , Grabación en Video
11.
Proc Natl Acad Sci U S A ; 113(9): E1170-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884156

RESUMEN

Exonuclease 1 (Exo1) is a 5'→3' exonuclease and 5'-flap endonuclease that plays a critical role in multiple eukaryotic DNA repair pathways. Exo1 processing at DNA nicks and double-strand breaks creates long stretches of single-stranded DNA, which are rapidly bound by replication protein A (RPA) and other single-stranded DNA binding proteins (SSBs). Here, we use single-molecule fluorescence imaging and quantitative cell biology approaches to reveal the interplay between Exo1 and SSBs. Both human and yeast Exo1 are processive nucleases on their own. RPA rapidly strips Exo1 from DNA, and this activity is dependent on at least three RPA-encoded single-stranded DNA binding domains. Furthermore, we show that ablation of RPA in human cells increases Exo1 recruitment to damage sites. In contrast, the sensor of single-stranded DNA complex 1-a recently identified human SSB that promotes DNA resection during homologous recombination-supports processive resection by Exo1. Although RPA rapidly turns over Exo1, multiple cycles of nuclease rebinding at the same DNA site can still support limited DNA processing. These results reveal the role of single-stranded DNA binding proteins in controlling Exo1-catalyzed resection with implications for how Exo1 is regulated during DNA repair in eukaryotic cells.


Asunto(s)
Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Exodesoxirribonucleasas/fisiología , Biocatálisis , Daño del ADN , Humanos , Saccharomyces cerevisiae/metabolismo
12.
Bioessays ; 36(12): 1156-61, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25171654

RESUMEN

Replication protein A (RPA), the major single-stranded DNA-binding protein in eukaryotic cells, is required for processing of single-stranded DNA (ssDNA) intermediates found in replication, repair, and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high-affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies showed that while RPA binds ssDNA with high affinity, the RPA complex can rapidly diffuse along ssDNA and be displaced by other proteins that act on ssDNA. Finally, dynamic DNA binding allows RPA to prevent error-prone repair of double-stranded breaks and promote error-free repair. Together, these findings suggest a new paradigm where RPA acts as a first responder at sites with ssDNA, thereby actively coordinating DNA repair and DNA synthesis.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Regulación Fúngica de la Expresión Génica , Proteína de Replicación A/química , Ustilago/metabolismo , Unión Competitiva , ADN de Hongos/genética , ADN de Cadena Simple/genética , Modelos Moleculares , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Recombinación Genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Transducción de Señal , Ustilago/genética
13.
J Mol Biol ; 426(19): 3246-3261, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25058683

RESUMEN

Replication protein A (RPA) is a eukaryotic single-stranded DNA (ssDNA) binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during these processes. To probe the dynamics of RPA-DNA interactions, we combined ensemble and single-molecule fluorescence approaches to examine human RPA (hRPA) diffusion along ssDNA and find that an hRPA heterotrimer can diffuse rapidly along ssDNA. Diffusion of hRPA is functional in that it provides the mechanism by which hRPA can transiently disrupt DNA hairpins by diffusing in from ssDNA regions adjacent to the DNA hairpin. hRPA diffusion was also monitored by the fluctuations in fluorescence intensity of a Cy3 fluorophore attached to the end of ssDNA. Using a novel method to calibrate the Cy3 fluorescence intensity as a function of hRPA position on the ssDNA, we estimate a one-dimensional diffusion coefficient of hRPA on ssDNA of D1~5000nt(2) s(-1) at 37°C. Diffusion of hRPA while bound to ssDNA enables it to be readily repositioned to allow other proteins access to ssDNA.


Asunto(s)
ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteína de Replicación A/química , Proteína de Replicación A/ultraestructura , Carbocianinas/química , Reparación del ADN/genética , Replicación del ADN/genética , Colorantes Fluorescentes/química , Reordenamiento Génico/genética , Humanos , Desnaturalización de Ácido Nucleico/genética , Unión Proteica/genética , Recombinación Genética
14.
J Biol Chem ; 289(29): 19928-41, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24895130

RESUMEN

Understanding how cellular machinery deals with chromosomal genome complexity is an important question because protein bound to DNA may affect various cellular processes of nucleic acid metabolism. DNA helicases are at the forefront of such processes, yet there is only limited knowledge how they remodel protein-DNA complexes and how these mechanisms are regulated. We have determined that representative human RecQ and Fe-S cluster DNA helicases are potently blocked by a protein-DNA interaction. The Fanconi anemia group J (FANCJ) helicase partners with the single-stranded DNA-binding protein replication protein A (RPA) to displace BamHI-E111A bound to duplex DNA in a specific manner. Protein displacement was dependent on the ATPase-driven function of the helicase and unique properties of RPA. Further biochemical studies demonstrated that the shelterin proteins TRF1 and TRF2, which preferentially bind the telomeric repeat found at chromosome ends, effectively block FANCJ from unwinding the forked duplex telomeric substrate. RPA, but not the Escherichia coli single-stranded DNA-binding protein or shelterin factor Pot1, stimulated FANCJ ejection of TRF1 from the telomeric DNA substrate. FANCJ was also able to displace TRF2 from the telomeric substrate in an RPA-dependent manner. The stimulation of helicase-catalyzed protein displacement is also observed with the DNA helicase RECQ1, suggesting a conserved functional interaction of RPA-interacting helicases. These findings suggest that partnerships between RPA and interacting human DNA helicases may greatly enhance their ability to dislodge proteins bound to duplex DNA, an activity that is likely to be highly relevant to their biological roles in DNA metabolism.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , RecQ Helicasas/metabolismo , Proteína de Replicación A/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , ADN/química , ADN/genética , Desoxirribonucleasa BamHI/metabolismo , Exodesoxirribonucleasas/metabolismo , Humanos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicación A/genética , Especificidad por Sustrato , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Helicasa del Síndrome de Werner
15.
J Biol Chem ; 287(51): 42773-83, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23095756

RESUMEN

Previously, we characterized Saccharomyces cerevisiae exonuclease 5 (EXO5), which is required for mitochondrial genome maintenance. Here, we identify the human homolog (C1orf176; EXO5) that functions in the repair of nuclear DNA damage. Human EXO5 (hEXO5) contains an iron-sulfur cluster. It is a single-stranded DNA (ssDNA)-specific bidirectional exonuclease with a strong preference for 5'-ends. After loading at an ssDNA end, hEXO5 slides extensively along the ssDNA prior to cutting, hence the designation sliding exonuclease. However, the single-stranded binding protein human replication protein A (hRPA) restricts sliding and enforces a unique, species-specific 5'-directionality onto hEXO5. This specificity is lost with a mutant form of hRPA (hRPA-t11) that fails to interact with hEXO5. hEXO5 localizes to nuclear repair foci in response to DNA damage, and its depletion in human cells leads to an increased sensitivity to DNA-damaging agents, in particular interstrand cross-linking-inducing agents. Depletion of hEXO5 also results in an increase in spontaneous and damage-induced chromosome abnormalities including the frequency of triradial chromosomes, suggesting an additional defect in the resolution of stalled DNA replication forks in hEXO5-depleted cells.


Asunto(s)
Exonucleasas/metabolismo , Genoma Humano/genética , Inestabilidad Genómica , Secuencia de Aminoácidos , Biocatálisis/efectos de los fármacos , Biocatálisis/efectos de la radiación , Aberraciones Cromosómicas/efectos de los fármacos , Aberraciones Cromosómicas/efectos de la radiación , Secuencia Conservada , Reactivos de Enlaces Cruzados/farmacología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , ADN de Cadena Simple/metabolismo , Exonucleasas/química , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/efectos de la radiación , Humanos , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/efectos de la radiación , Proteína de Replicación A/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/efectos de la radiación , Rayos Ultravioleta
16.
Methods Mol Biol ; 922: 193-204, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22976188

RESUMEN

Replication Protein A (RPA) is a single-strand DNA-binding protein that is found in all eukaryotes. RPA is subjected to multiple posttranslational modifications including serine- and threonine-phosphorylation, poly-ADP ribosylation, and SUMOylation. These modifications are believed to regulate RPA activity through modulating interactions with DNA and partner proteins. This article describes two methods used to detect posttranslational modified RPA: immunofluorescence and immmuoblotting.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Immunoblotting/métodos , Procesamiento Proteico-Postraduccional , Proteína de Replicación A/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Biología Molecular/métodos , Proteína de Replicación A/genética
17.
J Biol Chem ; 287(43): 36123-31, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22948311

RESUMEN

Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.


Asunto(s)
Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/química , Proteínas Serina-Treonina Quinasas/química , Proteína de Replicación A/química , Transducción de Señal , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Reparación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Mutación , Fosforilación/fisiología , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
J Biol Chem ; 287(6): 3908-18, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22179778

RESUMEN

Replication protein A (RPA), the major eukaryotic single-strand DNA (ssDNA)-binding protein, is essential for replication, repair, recombination, and checkpoint activation. Defects in RPA-associated cellular activities lead to genomic instability, a major factor in the pathogenesis of cancer and other diseases. ssDNA binding activity is primarily mediated by two domains in the 70-kDa subunit of the RPA complex. These ssDNA interactions are mediated by a combination of polar residues and four conserved aromatic residues. Mutation of the aromatic residues causes a modest decrease in binding to long (30-nucleotide) ssDNA fragments but results in checkpoint activation and cell cycle arrest in cells. We have used a combination of biochemical analysis and knockdown replacement studies in cells to determine the contribution of these aromatic residues to RPA function. Cells containing the aromatic residue mutants were able to progress normally through S-phase but were defective in DNA repair. Biochemical characterization revealed that mutation of the aromatic residues severely decreased binding to short ssDNA fragments less than 20 nucleotides long. These data indicate that altered binding of RPA to short ssDNA intermediates causes a defect in DNA repair but not in DNA replication. These studies show that cells require different RPA functions in DNA replication and DNA repair.


Asunto(s)
Reparación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteína de Replicación A/metabolismo , Sustitución de Aminoácidos , Animales , Puntos de Control del Ciclo Celular/fisiología , Replicación del ADN/fisiología , ADN de Cadena Simple/genética , Drosophila melanogaster , Células HeLa , Humanos , Ratones , Mutación Missense , Estructura Terciaria de Proteína , Proteína de Replicación A/genética , Fase S/fisiología , Saccharomyces cerevisiae
19.
Mol Cell Biol ; 31(8): 1719-33, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21300785

RESUMEN

How a cell chooses between nonhomologous end joining (NHEJ) and homologous recombination (HR) to repair a double-strand break (DSB) is a central and largely unanswered question. Although there is evidence of competition between HR and NHEJ, because of the DNA-dependent protein kinase (DNA-PK)'s cellular abundance, it seems that there must be more to the repair pathway choice than direct competition. Both a mutational approach and chemical inhibition were utilized to address how DNA-PK affects HR. We find that DNA-PK's ability to repress HR is both titratable and entirely dependent on its enzymatic activity. Still, although requisite, robust enzymatic activity is not sufficient to inhibit HR. Emerging data (including the data presented here) document the functional complexities of DNA-PK's extensive phosphorylations that likely occur on more than 40 sites. Even more, we show here that certain phosphorylations of the DNA-PK large catalytic subunit (DNA-PKcs) clearly promote HR while inhibiting NHEJ, and we conclude that the phosphorylation status of DNA-PK impacts how a cell chooses to repair a DSB.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , Secuencia de Aminoácidos , Animales , Biocatálisis , Dominio Catalítico , Línea Celular , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/química , Proteína Quinasa Activada por ADN/genética , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
20.
J Biol Chem ; 286(5): 3497-508, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21107010

RESUMEN

The premature aging and cancer-prone disease Werner syndrome is caused by loss of function of the RecQ helicase family member Werner syndrome protein (WRN). At the cellular level, loss of WRN results in replication abnormalities and chromosomal aberrations, indicating that WRN plays a role in maintenance of genome stability. Consistent with this notion, WRN possesses annealing, exonuclease, and ATPase-dependent helicase activity on DNA substrates, with particularly high affinity for and activity on replication and recombination structures. After certain DNA-damaging treatments, WRN is recruited to sites of blocked replication and co-localizes with the human single-stranded DNA-binding protein replication protein A (RPA). In this study we examined the physical and functional interaction between WRN and RPA specifically in relation to replication fork blockage. Co-immunoprecipitation experiments demonstrated that damaging treatments that block DNA replication substantially increased association between WRN and RPA in vivo, and a direct interaction between purified WRN and RPA was confirmed. Furthermore, we examined the combined action of RPA (unmodified and hyperphosphorylation mimetic) and WRN on model replication fork and gapped duplex substrates designed to bind RPA. Even with RPA bound stoichiometrically to this gap, WRN efficiently catalyzed regression of the fork substrate. Further analysis showed that RPA could be displaced from both substrates by WRN. RPA displacement by WRN was independent of its ATPase- and helicase-dependent remodeling of the fork. Taken together, our results suggest that, upon replication blockage, WRN and RPA functionally interact and cooperate to help properly resolve replication forks and maintain genome stability.


Asunto(s)
Replicación del ADN , Exodesoxirribonucleasas/fisiología , RecQ Helicasas/fisiología , Proteína de Replicación A/fisiología , Adenosina Trifosfatasas , Daño del ADN , ADN Helicasas , Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Humanos , Unión Proteica , RecQ Helicasas/metabolismo , Proteína de Replicación A/metabolismo , Helicasa del Síndrome de Werner
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...