Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sci Immunol ; 9(92): eadi9575, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207015

RESUMEN

Hyperactive TLR7 signaling has long been appreciated as driver of autoimmune disease in mouse models. Recently, gain-of-function mutations in TLR7 were identified as a monogenic cause of human lupus. TLR7 is an intracellular transmembrane receptor, sensing RNA breakdown products within late endosomes. Here, we show that endosome dysfunction leads to unrestricted TLR7 signaling and is associated with human lupus. The late endosomal BORC complex together with the small GTPase Arl8b controls intracellular TLR7 levels by regulating receptor turnover. This requires a direct interaction between the TLR7-associated trafficking factor Unc93b1 and Arl8b. We identified an UNC93B1 mutation in a patient with childhood-onset lupus, which results in reduced BORC interaction and endosomal TLR7 accumulation. Therefore, a failure to control TLR7 turnover is sufficient to break immunological tolerance to nucleic acids. Our results highlight the importance of an intact endomembrane system in preventing pathological TLR7 signaling and autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes , Receptor Toll-Like 7 , Ratones , Animales , Humanos , Niño , Receptor Toll-Like 7/genética , Transducción de Señal , Transporte de Proteínas , Mutación
2.
Sci Immunol ; 9(92): eadi9769, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207055

RESUMEN

UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Receptor Toll-Like 7 , Ratones , Animales , Humanos , Receptor Toll-Like 7/genética , Autoinmunidad/genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 8 , Receptor Toll-Like 3/metabolismo , Lupus Eritematoso Sistémico/genética , Proteínas de Transporte de Membrana
3.
Pediatr Rheumatol Online J ; 22(1): 9, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178067

RESUMEN

BACKGROUND: STING-associated vasculopathy with onset in infancy (SAVI) is a rare type I interferonopathy caused by heterozygous variants in the STING gene. In SAVI, STING variants confer a gain-of-function which causes overactivation of type I interferon (IFN) signaling leading to autoinflammation and various degrees of immunodeficiency and autoimmunity. CASE PRESENTATION: We report the case of a 5 year old child and his mother, both of whom presented with systemic inflammatory symptoms yet widely varying organ involvement, disease course and therapeutic response. Genetic testing revealed a heterozygous STING variant, R281Q, in the child and his mother that had previously been associated with SAVI. However, in contrast to previously reported SAVI cases due to the R281Q variant, our patients showed an atypical course of disease with alopecia totalis in the child and a complete lack of lung involvement in the mother. CONCLUSIONS: Our findings demonstrate the phenotypic breadth of clinical SAVI manifestations. Given the therapeutic benefit of treatment with JAK inhibitors, early genetic testing for SAVI should be considered in patients with unclear systemic inflammation involving cutaneous, pulmonary, or musculoskeletal symptoms, and signs of immunodeficiency and autoimmunity.


Asunto(s)
Síndromes de Inmunodeficiencia , Interferón Tipo I , Enfermedades Vasculares , Preescolar , Humanos , Inflamación/genética , Interferón Tipo I/genética , Pulmón , Mutación , Enfermedades Vasculares/genética , Masculino , Femenino
4.
Open Forum Infect Dis ; 11(1): ofad641, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38179103

RESUMEN

Genetic defects in the interferon (IFN) system or neutralizing autoantibodies against type I IFNs contribute to severe COVID-19. Such autoantibodies were proposed to affect post-COVID-19 syndrome (PCS), possibly causing persistent fatigue for >12 weeks after confirmed SARS-CoV-2 infection. In the current study, we investigated 128 patients with PCS, 21 survivors of severe COVID-19, and 38 individuals who were asymptomatic. We checked for autoantibodies against IFN-α, IFN-ß, and IFN-ω. Few patients with PCS had autoantibodies against IFNs but with no neutralizing activity, indicating a limited role of type I IFNs in PCS pathogenesis. In a subset consisting of 28 patients with PCS, we evaluated IFN-stimulated gene activity and showed that it did not correlate with fatigue. In conclusion, impairment of the type I IFN system is unlikely responsible for adult PCS.

5.
Front Immunol ; 14: 1253279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809086

RESUMEN

Cutaneous lupus erythematosus (CLE), the main manifestation of systemic lupus erythematosus (SLE), is driven by type I interferons (IFNs) and often only partially responds to conventional therapies. Treatment of seven SLE patients with the monoclonal antibody anifrolumab induced fast and sustained remission of previously refractory CLE lesions, beginning within the first weeks of treatment. Decline in CLASI-A score was paralleled by a reduction in IFN score determined by mRNA expression of seven IFN-stimulated genes (ISGs) in blood. These data suggest that a subset of ISGs could be a valuable biomarker in CLE.


Asunto(s)
Interferón Tipo I , Lupus Eritematoso Cutáneo , Lupus Eritematoso Sistémico , Humanos , Receptores de Interferón , Lupus Eritematoso Cutáneo/diagnóstico , Lupus Eritematoso Cutáneo/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/tratamiento farmacológico
6.
Pediatr Rheumatol Online J ; 21(1): 104, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726751

RESUMEN

BACKGROUND: Juvenile dermatomyositis (jDM) is the most common idiopathic inflammatory myopathy of childhood. Amyopathic or hypomyopathic courses have been described. CASE PRESENTATION: We present the case of a 4-year-old patient with MDA5 antibody positive jDM and interstitial lung disease. In our patient, typical symptoms of jDM with classical skin lesions, arthritis, proximal muscle weakness, and ulcerative calcifications were observed. Due to the severity of the disease and the pulmonary changes, therapy with the Janus kinase (JAK) inhibitor ruxolitinib was added to the therapy with corticosteroids, intravenous immunoglobulins (IVIG) and hydroxychloroquine leading to a fast and sustained remission. CONCLUSION: While there is growing evidence that JAK inhibition is a promising therapeutic option in jDM our case report shows that this approach may also be effective in MDA5-positive jDM with high risk features.


Asunto(s)
Artritis , Dermatomiositis , Inhibidores de las Cinasas Janus , Miositis , Preescolar , Humanos , Dermatomiositis/tratamiento farmacológico , Inmunoglobulinas Intravenosas/uso terapéutico , Inhibidores de las Cinasas Janus/uso terapéutico , Factores de Riesgo
7.
J Allergy Clin Immunol ; 152(5): 1336-1344.e5, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37544411

RESUMEN

BACKGROUND: Genetic defects in components of inflammasomes can cause autoinflammation. Biallelic loss-of-function mutations in dipeptidyl peptidase 9 (DPP9), a negative regulator of the NLRP1 and CARD8 inflammasomes, have recently been shown to cause an inborn error of immunity characterized by pancytopenia, skin manifestations, and increased susceptibility to infections. OBJECTIVE: We sought to study the molecular basis of autoinflammation in a patient with severe infancy-onset hyperinflammation associated with signs of fulminant hemophagocytic lymphohistiocytosis. METHODS: Using heterologous cell models as well as patient cells, we performed genetic, immunologic, and molecular investigations to identify the genetic cause and to assess the impact of the identified mutation on inflammasome activation. RESULTS: The patient exhibited pancytopenia with decreased neutrophils and T, B, and natural killer cells, and markedly elevated levels of lactate dehydrogenase, ferritin, soluble IL-2 receptor, and triglycerides. In addition, serum levels of IL-1ß and IL-18 were massively increased, consistent with inflammasome activation. Genetic analysis revealed a previously undescribed de novo mutation in DPP9 (c.755G>C, p.Arg252Pro) affecting a highly conserved amino acid residue. The mutation led to destabilization of the DPP9 protein as shown in transiently transfected HEK293T cells and in patient-derived induced pluripotent stem cells. Using functional inflammasome assays in HEK293T cells, we demonstrated that mutant DPP9 failed to restrain the NLRP1 and CARD8 inflammasomes, resulting in constitutive inflammasome activation. These findings suggest that the Arg252Pro DPP9 mutation acts in a dominant-negative manner. CONCLUSIONS: A de novo mutation in DPP9 leads to severe infancy-onset autoinflammation because of unleashed inflammasome activation.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Pancitopenia , Humanos , Proteínas Adaptadoras de Señalización CARD/genética , Inflamasomas/genética , Inflamasomas/metabolismo , Linfohistiocitosis Hemofagocítica/genética , Células HEK293 , Proteínas Reguladoras de la Apoptosis/genética , Mutación , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Proteínas de Neoplasias/genética
8.
Nat Rev Rheumatol ; 18(12): 681-682, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36203062

Asunto(s)
ARN , Humanos
9.
Front Immunol ; 13: 1029423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275728

RESUMEN

Gain-of-function variants in the stimulator of interferon response cGAMP interactor 1 (STING1) gene cause STING-Associated Vasculopathy with onset in Infancy (SAVI). Previously, only heterozygous and mostly de novo STING1 variants have been reported to cause SAVI. Interestingly, one variant that only leads to SAVI when homozygous, namely c.841C>T p.(Arg281Trp), has recently been described. However, there are no entries in public databases regarding an autosomal recessive pattern of inheritance. Here, we report four additional unrelated SAVI patients carrying c.841C>T in homozygous state. All patients had interstitial lung disease and displayed typical interferon activation patterns. Only one child displayed cutaneous vasculitis, while three other patients presented with a relatively mild SAVI phenotype. Steroid and baricitinib treatment had a mitigating effect on the disease phenotype in two cases, but failed to halt disease progression. Heterozygous c.841C>T carriers in our analysis were healthy and showed normal interferon activation. Literature review identified eight additional cases with autosomal recessive SAVI caused by c.841C>T homozygosity. In summary, we present four novel and eight historic cases of autosomal recessive SAVI. We provide comprehensive clinical data and show treatment regimens and clinical responses. To date, SAVI has been listed as an exclusively autosomal dominant inherited trait in relevant databases. With this report, we aim to raise awareness for autosomal recessive inheritance in this rare, severe disease which may aid in early diagnosis and development of optimized treatment strategies.


Asunto(s)
Enfermedades Cutáneas Vasculares , Enfermedades Vasculares , Humanos , Proteínas de la Membrana/genética , Mutación , Enfermedades Vasculares/genética , Interferones/genética
10.
Stem Cell Res ; 64: 102912, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115319

RESUMEN

Mutations in SAMHD1, encoding SAM and HD domain-containing protein 1, cause Aicardi-Goutières syndrome (AGS) 5, an infancy-onset autoinflammatory disease characterized by neurodegeneration and chronic activation of type I interferon. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from fibroblasts and peripheral blood mononuclear cells from three AGS patients with biallelic SAMHD1 mutations. These cell lines provide a valuable source to study disease mechanisms and to assess therapeutic molecules.


Asunto(s)
Células Madre Pluripotentes Inducidas , Interferón Tipo I , Proteínas de Unión al GTP Monoméricas , Humanos , Proteína 1 que Contiene Dominios SAM y HD/genética , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación/genética , Interferón Tipo I/genética , Interferón Tipo I/metabolismo
11.
Stem Cell Res ; 64: 102895, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36027857

RESUMEN

Mutations in TREX1, encoding three prime repair exonuclease 1, cause Aicardi-Goutières syndrome (AGS) 1, an autoinflammatory disease characterized by neurodegeneration and constitutive activation of the antiviral cytokine type I interferon. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from fibroblasts from two AGS patients with biallelic TREX1 mutations. These cell lines offer a unique resource to investigate disease processes in a cell-type specific manner.


Asunto(s)
Células Madre Pluripotentes Inducidas , Interferón Tipo I , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Exodesoxirribonucleasas/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Mutación/genética , Interferón Tipo I/genética , Citocinas , Antivirales
13.
Int J Cancer ; 151(5): 783-796, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35527719

RESUMEN

B-cell receptor (BCR) signaling is central for the pathomechanism of chronic lymphocytic leukemia (CLL), and inhibitors of BCR signaling have substantially improved treatment options. To model malignant and nonmalignant BCR signaling, we quantified five components of BCR signaling (ZAP70/SYK, BTK, PLCγ2, AKT, ERK1/2) in single cells from primary human leukemic cells and from nonmalignant tissue. We measured signaling activity in a time-resolved manner after stimulation with BCR crosslinking by anti-IgM and/or anti-CD19 and with or without inhibition of phosphatases with H2 O2 . The phosphorylation of BCR signaling components was increased in malignant cells compared to nonmalignant cells and in IGHV unmutated CLL cells compared to IGHV mutated CLL cells. Intriguingly, inhibition of phosphatases with H2 O2 led to higher phosphorylation levels of BCR components in CLL cells with mutated IGHV compared to unmutated IGHV. We modeled the connectivity of the cascade components by correlating signal intensities across single cells. The network topology remained stable between malignant and nonmalignant cells. To additionally test for the impact of therapeutic compounds on the network topology, we challenged the BCR signaling cascade with inhibitors for BTK (ibrutinib), PI3K (idelalisib), LYN (dasatinib) and SYK (entospletinib). Idelalisib treatment resulted in similar effects in malignant and nonmalignant cells, whereas ibrutinib was mostly active on CLL cells. Idelalisib and ibrutinib had complementary effects on the BCR signaling cascade whose activity was further reduced upon dasatinib and entospletinib treatment. The characterization of the molecular circuitry of leukemic BCR signaling will allow a more refined targeting of this Achilles heel.


Asunto(s)
Linfocitos B , Leucemia Linfocítica Crónica de Células B , Inhibidores de Proteínas Quinasas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Linfocitos B/efectos de los fármacos , Linfocitos B/patología , Dasatinib/farmacología , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Leucemia Linfocítica Crónica de Células B/fisiopatología , Monoéster Fosfórico Hidrolasas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores de Antígenos de Linfocitos B , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
14.
Pediatr Rheumatol Online J ; 20(1): 24, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410415

RESUMEN

BACKGROUND: Singleton-Merten syndrome 1 (SGMRT1) is a rare type I interferonopathy caused by heterozygous mutations in the IFIH1 gene. IFIH1 encodes the pattern recognition receptor MDA5 which senses viral dsRNA and activates antiviral type I interferon (IFN) signaling. In SGMRT1, IFIH1 mutations confer a gain-of-function which causes overactivation of type I interferon (IFN) signaling leading to autoinflammation. CASE PRESENTATION: We report the case of a nine year old child who initially presented with a slowly progressive decline of gross motor skill development and muscular weakness. At the age of five years, he developed osteoporosis, acro-osteolysis, alveolar bone loss and severe psoriasis. Whole exome sequencing revealed a pathogenic de novo IFIH1 mutation, confirming the diagnosis of SGMRT1. Consistent with constitutive type I interferon activation, patient blood cells exhibited a strong IFN signature as shown by marked up-regulation of IFN-stimulated genes. The patient was started on the Janus kinase (JAK) inhibitor, ruxolitinib, which inhibits signaling at the IFN-α/ß receptor. Within days of treatment, psoriatic skin lesions resolved completely and the IFN signature normalized. Therapeutic efficacy was sustained and over the course muscular weakness, osteopenia and growth also improved. CONCLUSIONS: JAK inhibition represents a valuable therapeutic option for patients with SGMRT1. Our findings also highlight the potential of a patient-tailored therapeutic approach based on pathogenetic insight.


Asunto(s)
Interferón Tipo I , Osteoporosis , Enfermedades de la Aorta , Niño , Preescolar , Hipoplasia del Esmalte Dental , Humanos , Helicasa Inducida por Interferón IFIH1/genética , Masculino , Metacarpo/anomalías , Debilidad Muscular , Enfermedades Musculares , Nitrilos , Odontodisplasia , Osteoporosis/genética , Pirazoles , Pirimidinas , Calcificación Vascular
15.
J Invest Dermatol ; 142(3 Pt A): 633-640.e6, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34400195

RESUMEN

The exonuclease TREX1 safeguards the cells against DNA accumulation in the cytosol and thereby prevents innate immune activation and autoimmunity. TREX1 mutations lead to chronic DNA damage and cell-intrinsic IFN-1 response. Associated disease phenotypes include Aicardi‒Goutières syndrome, familial chilblain lupus, and systemic lupus erythematosus. Given the role of UV light in lupus pathogenesis, we assessed sensitivity to UV light in patients with lupus and TREX1 mutation by phototesting, which revealed enhanced photosensitivity. TREX1-deficient fibroblasts and keratinocytes generated increased levels of ROS in response to UV irradiation as well as increased levels of 8-oxo-guanine lesions after oxidative stress. Likewise, the primary UV-induced DNA lesions cyclobutane pyrimidine dimers were induced more strongly in TREX1-deficient cells. Further analysis revealed that single-stranded DNA regions, frequently formed during DNA replication and repair, promote cyclobutane pyrimidine dimer formation. Together, this resulted in a strong UV-induced DNA damage response that was associated with a cGAS-dependent IFN-1 activation. In conclusion, these findings link chronic DNA damage to photosensitivity and IFN-1 production in TREX1 deficiency and explain the induction of disease flares on UV exposure in patients with lupus and TREX1 mutation.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Eritema Pernio , Lupus Eritematoso Cutáneo , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/patología , Eritema Pernio/genética , ADN/genética , Exodesoxirribonucleasas/genética , Humanos , Lupus Eritematoso Cutáneo/genética , Nucleotidiltransferasas/genética , Fosfoproteínas/genética
16.
Front Immunol ; 12: 680334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421895

RESUMEN

Background: Inborn errors of immunity (IEI) present with a large phenotypic spectrum of disease, which can pose diagnostic and therapeutic challenges. Suppressor of cytokine signaling 1 (SOCS1) is a key negative regulator of cytokine signaling, and has recently been associated with a novel IEI. Of patients described to date, it is apparent that SOCS1 haploinsufficiency has a pleiotropic effect in humans. Objective: We sought to investigate whether dysregulation of immune pathways, in addition to STAT1, play a role in the broad clinical manifestations of SOCS1 haploinsufficiency. Methods: We assessed impacts of reduced SOCS1 expression across multiple immune cell pathways utilizing patient cells and CRISPR/Cas9 edited primary human T cells. Results: SOCS1 haploinsufficiency phenotypes straddled across the International Union of Immunological Societies classifications of IEI. We found that reduced SOCS1 expression led to dysregulation of multiple intracellular pathways in immune cells. STAT1 phosphorylation is enhanced, comparably with STAT1 gain-of-function mutations, and STAT3 phosphorylation is similarly reduced with concurrent reduction of Th17 cells. Furthermore, reduced SOCS1 E3 ligase function was associated with increased FAK1 in immune cells, and increased AKT and p70 ribosomal protein S6 kinase phosphorylation. We also found Toll-like receptor responses are increased in SOCS1 haploinsufficiency patients. Conclusions: SOCS1 haploinsufficiency is a pleiotropic monogenic IEI. Dysregulation of multiple immune cell pathways may explain the variable clinical phenotype associated with this new condition. Knowledge of these additional dysregulated immune pathways is important when considering the optimum management for SOCS1 haploinsufficient patients.


Asunto(s)
Haploinsuficiencia , Sistema Inmunológico/metabolismo , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Alelos , Autoinmunidad , Biomarcadores , Estudios de Casos y Controles , Niño , Preescolar , Citocinas , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Síndrome de Job/diagnóstico , Síndrome de Job/etiología , Síndrome de Job/metabolismo , Masculino , Modelos Biológicos , Linaje , Linfocitos T/inmunología , Linfocitos T/metabolismo
17.
CRISPR J ; 4(2): 178-190, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33876960

RESUMEN

STAT3-hyper IgE syndrome (STAT3-HIES) is a primary immunodeficiency presenting with destructive lung disease along with other symptoms. CRISPR-Cas9-mediated adenine base editors (ABEs) have the potential to correct one of the most common STAT3-HIES causing heterozygous STAT3 mutations (c.1144C>T/p.R382W). As a proof-of-concept, we successfully applied ABEs to correct STAT3 p.R382W in patient fibroblasts and induced pluripotent stem cells (iPSCs). Treated primary STAT3-HIES patient fibroblasts showed a correction efficiency of 29% ± 7% without detectable off-target effects evaluated through whole-genome and high-throughput sequencing. Compared with untreated patient fibroblasts, corrected single-cell clones showed functional rescue of STAT3 signaling with significantly increased STAT3 DNA-binding activity and target gene expression of CCL2 and SOCS3. Patient-derived iPSCs were corrected with an efficiency of 30% ± 6% and differentiated to alveolar organoids showing preserved plasticity in treated cells. In conclusion, our results are supportive for ABE-based gene correction as a potential causative treatment of STAT3-HIES.


Asunto(s)
Edición Génica/métodos , Síndrome de Job/genética , Síndrome de Job/terapia , Factor de Transcripción STAT3/genética , Adenina , Sistemas CRISPR-Cas , Diferenciación Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fibroblastos , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoglobulina E/genética , Células Madre Pluripotentes Inducidas , Mutación , Secuenciación Completa del Genoma
18.
Sci Total Environ ; 769: 144324, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33482551

RESUMEN

Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.

20.
People Nat (Hoboken) ; 2(2): 305-316, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32626843

RESUMEN

Making agriculture sustainable is a global challenge. In the European Union (EU), the Common Agricultural Policy (CAP) is failing with respect to biodiversity, climate, soil, land degradation as well as socio-economic challenges.The European Commission's proposal for a CAP post-2020 provides a scope for enhanced sustainability. However, it also allows Member States to choose low-ambition implementation pathways. It therefore remains essential to address citizens' demands for sustainable agriculture and rectify systemic weaknesses in the CAP, using the full breadth of available scientific evidence and knowledge.Concerned about current attempts to dilute the environmental ambition of the future CAP, and the lack of concrete proposals for improving the CAP in the draft of the European Green Deal, we call on the European Parliament, Council and Commission to adopt 10 urgent action points for delivering sustainable food production, biodiversity conservation and climate mitigation.Knowledge is available to help moving towards evidence-based, sustainable European agriculture that can benefit people, nature and their joint futures.The statements made in this article have the broad support of the scientific community, as expressed by above 3,600 signatories to the preprint version of this manuscript. The list can be found here (https://doi.org/10.5281/zenodo.3685632).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...