Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4065, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744895

RESUMEN

Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving selectively directing disease-causing proteins for degradation through proteolytic systems. Our ability to exploit targeted protein degradation (TPD) for antibiotic development remains nascent due to our limited understanding of which bacterial proteins are amenable to a TPD strategy. Here, we use a genetic system to model chemically-induced proximity and degradation to screen essential proteins in Mycobacterium smegmatis (Msm), a model for the human pathogen M. tuberculosis (Mtb). By integrating experimental screening of 72 protein candidates and machine learning, we find that drug-induced proximity to the bacterial ClpC1P1P2 proteolytic complex leads to the degradation of many endogenous proteins, especially those with disordered termini. Additionally, TPD of essential Msm proteins inhibits bacterial growth and potentiates the effects of existing antimicrobial compounds. Together, our results provide biological principles to select and evaluate attractive targets for future Mtb PROTAC development, as both standalone antibiotics and potentiators of existing antibiotic efficacy.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Mycobacterium smegmatis , Mycobacterium tuberculosis , Proteolisis , Proteolisis/efectos de los fármacos , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana , Aprendizaje Automático
2.
Ann Intern Med ; 176(3): 333-339, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36877966

RESUMEN

BACKGROUND: Nontuberculous mycobacteria are water-avid pathogens that are associated with nosocomial infections. OBJECTIVE: To describe the analysis and mitigation of a cluster of Mycobacterium abscessus infections in cardiac surgery patients. DESIGN: Descriptive study. SETTING: Brigham and Women's Hospital, Boston, Massachusetts. PARTICIPANTS: Four cardiac surgery patients. INTERVENTION: Commonalities among cases were sought, potential sources were cultured, patient and environmental specimens were sequenced, and possible sources were abated. MEASUREMENTS: Description of the cluster, investigation, and mitigation. RESULTS: Whole-genome sequencing confirmed homology among clinical isolates. Patients were admitted during different periods to different rooms but on the same floor. There were no common operating rooms, ventilators, heater-cooler devices, or dialysis machines. Environmental cultures were notable for heavy mycobacterial growth in ice and water machines on the cluster unit but little or no growth in ice and water machines in the hospital's other 2 inpatient towers or in shower and sink faucet water in any of the hospital's 3 inpatient towers. Whole-genome sequencing confirmed the presence of a genetically identical element in ice and water machine and patient specimens. Investigation of the plumbing system revealed a commercial water purifier with charcoal filters and an ultraviolet irradiation unit leading to the ice and water machines in the cluster tower but not the hospital's other inpatient towers. Chlorine was present at normal levels in municipal source water but was undetectable downstream from the purification unit. There were no further cases after high-risk patients were switched to sterile and distilled water, ice and water machine maintenance was intensified, and the commercial purification system was decommissioned. LIMITATION: Transmission pathways were not clearly characterized. CONCLUSION: Well-intentioned efforts to modify water management systems may inadvertently increase infection risk for vulnerable patients. PRIMARY FUNDING SOURCE: National Institutes of Health.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Mycobacterium abscessus , Purificación del Agua , Estados Unidos , Humanos , Femenino , Hielo , Pacientes Internos , Procedimientos Quirúrgicos Cardíacos/efectos adversos
3.
Nat Microbiol ; 8(3): 481-497, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658396

RESUMEN

Mycobacterium abscessus is an emerging pathogen causing lung infection predominantly in patients with underlying structural abnormalities or lung disease and is resistant to most frontline antibiotics. As the pathogenic mechanisms of M. abscessus in the context of the lung are not well-understood, we developed an infection model using air-liquid interface culture and performed a transposon mutagenesis and sequencing screen to identify genes differentially required for bacterial survival in the lung. Biotin cofactor synthesis was required for M. abscessus growth due to increased intracellular biotin demand, while pharmacological inhibition of biotin synthesis prevented bacterial proliferation. Biotin was required for fatty acid remodelling, which increased cell envelope fluidity and promoted M. abscessus survival in the alkaline lung environment. Together, these results indicate that biotin-dependent fatty acid remodelling plays a critical role in pathogenic adaptation to the lung niche, suggesting that biotin synthesis and fatty acid metabolism might provide therapeutic targets for treatment of M. abscessus infection.


Asunto(s)
Mycobacterium abscessus , Neumonía , Humanos , Mycobacterium abscessus/genética , Biotina , Antibacterianos/farmacología , Pulmón/microbiología , Neumonía/patología , Ácidos Grasos
4.
Elife ; 112022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35659317

RESUMEN

Mycobacterium abscessus (Mab) is a rapidly growing non-tuberculous mycobacterium (NTM) that causes a wide range of infections. Treatment of Mab infections is difficult because the bacterium is intrinsically resistant to many classes of antibiotics. Developing new and effective treatments against Mab requires a better understanding of the unique vulnerabilities that can be targeted for future drug development. To achieve this, we identified essential genes in Mab by conducting transposon sequencing (TnSeq) on the reference Mab strain ATCC 19977. We generated ~51,000 unique transposon mutants and used this high-density library to identify 362 essential genes for in vitro growth. To investigate species-specific vulnerabilities in Mab, we further characterized MAB_3167c, a predicted penicillin-binding protein and hypothetical lipoprotein (PBP-lipo) that is essential in Mab and non-essential in Mycobacterium tuberculosis (Mtb). We found that PBP-lipo primarily localizes to the subpolar region and later to the septum as cells prepare to divide. Depletion of Mab PBP-lipo causes cells to elongate, develop ectopic branches, and form multiple septa. Knockdown of PBP-lipo along with PbpB, DacB1, and a carboxypeptidase, MAB_0519 lead to synergistic growth arrest. In contrast, these genetic interactions were absent in the Mtb model organism, Mycobacterium smegmatis, indicating that the PBP-lipo homologs in the two species exist in distinct genetic networks. Finally, repressing PBP-lipo sensitized the reference strain and 11 Mab clinical isolates to several classes of antibiotics, including the ß-lactams, ampicillin, and amoxicillin by greater than 128-fold. Altogether, this study presents PBP-lipo as a key enzyme to study Mab-specific processes in cell wall synthesis and importantly positions PBP-lipo as an attractive drug target to treat Mab infections.


Asunto(s)
Mycobacterium abscessus , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Mutagénesis , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/genética
6.
Cell Rep ; 37(13): 110154, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965429

RESUMEN

Although prokaryotic organisms lack traditional organelles, they must still organize cellular structures in space and time, challenges that different species solve differently. To systematically define the subcellular architecture of mycobacteria, we perform high-throughput imaging of a library of fluorescently tagged proteins expressed in Mycobacterium smegmatis and develop a customized computational pipeline, MOMIA and GEMATRIA, to analyze these data. Our results establish a spatial organization network of over 700 conserved mycobacterial proteins and reveal a coherent localization pattern for many proteins of known function, including those in translation, energy metabolism, cell growth and division, as well as proteins of unknown function. Furthermore, our pipeline exploits morphologic proxies to enable a pseudo-temporal approximation of protein localization and identifies previously uncharacterized cell-cycle-dependent dynamics of essential mycobacterial proteins. Collectively, these data provide a systems perspective on the subcellular organization of mycobacteria and provide tools for the analysis of bacteria with non-standard growth characteristics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Imagen Molecular/métodos , Mycobacterium smegmatis/metabolismo , Orgánulos/metabolismo , Análisis Espacio-Temporal , Ciclo Celular , Transporte de Proteínas
7.
J Bacteriol ; 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33361193

RESUMEN

The recalcitrance of mycobacteria to antibiotic therapy is in part due to its ability to build proteins into a multi-layer cell wall. Proper synthesis of both cell wall constituents and associated proteins is crucial to maintaining cell integrity, and intimately tied to antibiotic susceptibility. How mycobacteria properly synthesize the membrane-associated proteome, however, remains poorly understood. Recently, we found that loss of lepA in Mycobacterium smegmatis (Msm) altered tolerance to rifampin, a drug that targets a non-ribosomal cellular process. LepA is a ribosome-associated GTPase found in bacteria, mitochondria, and chloroplasts, yet its physiological contribution to cellular processes is not clear. To uncover the determinants of LepA-mediated drug tolerance, we characterized the whole-cell proteomes and transcriptomes of a lepA deletion mutant relative to strains with lepA We find that LepA is important for the steady-state abundance of a number of membrane-associated proteins, including an outer membrane porin, MspA, which is integral to nutrient uptake and drug susceptibility. Loss of LepA leads to a decreased amount of porin in the membrane which leads to the drug tolerance phenotype of the lepA mutant. In mycobacteria, the translation factor LepA modulates mycobacterial membrane homeostasis, which in turn affects antibiotic tolerance.ImportanceThe mycobacterial cell wall is a promising target for new antibiotics due to the abundance of important membrane-associated proteins. Defining mechanisms of synthesis of the membrane proteome will be critical to uncovering and validating drug targets. We found that LepA, a universally conserved translation factor, controls the synthesis of a number of major membrane proteins in M. smegmatis LepA primarily controls synthesis of the major porin MspA. Loss of LepA results in decreased permeability through the loss of this porin, including permeability to antibiotics like rifampin and vancomycin. In mycobacteria, regulation from the ribosome is critical for the maintenance of membrane homeostasis and, importantly, antibiotic susceptibility.

8.
PLoS Pathog ; 16(11): e1009063, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253310

RESUMEN

Genomic dissection of antibiotic resistance in bacterial pathogens has largely focused on genetic changes conferring growth above a single critical concentration of drug. However, reduced susceptibility to antibiotics-even below this breakpoint-is associated with poor treatment outcomes in the clinic, including in tuberculosis. Clinical strains of Mycobacterium tuberculosis exhibit extensive quantitative variation in antibiotic susceptibility but the genetic basis behind this spectrum of drug susceptibility remains ill-defined. Through a genome wide association study, we show that non-synonymous mutations in dnaA, which encodes an essential and highly conserved regulator of DNA replication, are associated with drug resistance in clinical M. tuberculosis strains. We demonstrate that these dnaA mutations specifically enhance M. tuberculosis survival during isoniazid treatment via reduced expression of katG, the activator of isoniazid. To identify DnaA interactors relevant to this phenotype, we perform the first genome-wide biochemical mapping of DnaA binding sites in mycobacteria which reveals a DnaA interaction site that is the target of recurrent mutation in clinical strains. Reconstructing clinically prevalent mutations in this DnaA interaction site reproduces the phenotypes of dnaA mutants, suggesting that clinical strains of M. tuberculosis have evolved mutations in a previously uncharacterized DnaA pathway that quantitatively increases resistance to the key first-line antibiotic isoniazid. Discovering genetic mechanisms that reduce drug susceptibility and support the evolution of high-level drug resistance will guide development of biomarkers capable of prospectively identifying patients at risk of treatment failure in the clinic.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Farmacorresistencia Bacteriana Múltiple , Isoniazida/farmacología , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Replicación del ADN , Estudio de Asociación del Genoma Completo , Humanos , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...