Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(34): e2209735120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579162

RESUMEN

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations. ProxyOH comprises only eight variables that are generally observed by routine ground- or satellite-based instruments. ProxyOH scales linearly with in situ [OH] spatial variations along the ATom flight tracks (median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order approximation of the sensitivity of OH variations to individual terms. Two terms modulate within-region ProxyOH variations-water vapor (H2O) and, to a lesser extent, nitric oxide (NO). This implies that a limited set of observations could offer an avenue for observation-based mapping of OH spatial variations over much of the remote marine troposphere. Both H2O and NO are expected to change with climate, while NO also varies strongly with human activities. We also illustrate the utility of ProxyOH as a process-based approach for evaluating intermodel differences in remote marine tropospheric OH.

2.
J Adv Model Earth Syst ; 14(6): e2021MS002889, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35864945

RESUMEN

A new configuration of the Community Earth System Model (CESM)/Community Atmosphere Model with full chemistry (CAM-chem) supporting the capability of horizontal mesh refinement through the use of the spectral element (SE) dynamical core is developed and called CESM/CAM-chem-SE. Horizontal mesh refinement in CESM/CAM-chem-SE is unique and novel in that pollutants such as ozone are accurately represented at human exposure relevant scales while also directly including global feedbacks. CESM/CAM-chem-SE with mesh refinement down to ∼14 km over the conterminous US (CONUS) is the beginning of the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0). Here, MUSICAv0 is evaluated and used to better understand how horizontal resolution and chemical complexity impact ozone and ozone precursors over CONUS as compared to measurements from five aircraft campaigns, which occurred in 2013. This field campaign analysis demonstrates the importance of using finer horizontal resolution to accurately simulate ozone precursors such as nitrogen oxides and carbon monoxide. In general, the impact of using more complex chemistry on ozone and other oxidation products is more pronounced when using finer horizontal resolution where a larger number of chemical regimes are resolved. Large model biases for ozone near the surface remain in the Southeast US as compared to the aircraft observations even with updated chemistry and finer horizontal resolution. This suggests a need for adding the capability of replacing sections of global emission inventories with regional inventories, increasing the vertical resolution in the planetary boundary layer, and reducing model biases in meteorological variables such as temperature and clouds.

3.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34635596

RESUMEN

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth's radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO2) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime (τHPMTF < 2 h) and terminates DMS oxidation to SO2 When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.

4.
Atmos Environ (1994) ; 2222020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33013177

RESUMEN

Recirculation of pollutants due to a bay breeze effect is a key meteorological mechanism impacting air quality near urban coastal areas, but regional and global chemical transport models have historically struggled to capture this phenomenon. We present a case study of a high ozone (O3) episode observed over the Chesapeake Bay during the NASA Ozone Water-Land Environmental Transition Study (OWLETS) in summer 2017. OWLETS included a complementary suite of ground-based and airborne observations, with which we characterize the meteorological and chemical context of this event and develop a framework to evaluate model performance. Two publicly-available NASA global high-resolution coupled chemistry-meteorology models (CCMMs) are investigated: GEOS-CF and MERRA2-GMI. The GEOS-CF R2 value for comparisons between the NASA Sherpa C-23 aircraft measurements to the GEOS-CF resulted in good agreement (R2: 0.67) on July 19th and fair agreement (R2: 0.55) for July 20th. Compared to surface observations, we find the GEOS-CF product with a 25 x 25 km2 grid box, at an hourly (R2: 0.62 to 0.87) and 15-minute (R2: 0.64 to 0.87) interval for six regional sites outperforms the hourly nominally 50 x 50 km2 gridded MERRA2-GMI (R2: 0.53 to 0.76) for four of the six sites, suggesting it is better capable of simulating complex chemical and meteorological features associated with ozone transport within the Chesapeake Bay airshed. When the GEOS-CF product was compared to the TOLNet LiDAR observations at both NASA Langley Research Center (LaRC) and the Chesapeake Bay Bridge Tunnel (CBBT), the median differences at LaRC were -6 to 8% and at CBBT were ± 7% between 400 to 2000 m ASL. This indicates that, for this case study, the GEOS-CF is able to simulate surface level ozone diurnal cycles and vertical ozone profiles at small scales between the surface level and 2000 m ASL. Evaluating global chemical model simulations at sub-regional scales will help air quality scientists understand the complex processes occurring at small spatial and temporal scales within complex surface terrain changes, simulating nighttime chemistry and deposition, and the potential to use global chemical transport simulations in support of regional and sub-regional field campaigns.

5.
Proc Natl Acad Sci U S A ; 117(9): 4505-4510, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071211

RESUMEN

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.

6.
Atmos Chem Phys ; 20(13): 7753-7781, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33688335

RESUMEN

The global oxidation capacity, defined as the tropospheric mean concentration of the hydroxyl radical (OH), controls the lifetime of reactive trace gases in the atmosphere such as methane and carbon monoxide (CO). Models tend to underestimate the methane lifetime and CO concentrations throughout the troposphere, which is consistent with excessive OH. Approximately half of the oxidation of methane and non-methane volatile organic compounds (VOCs) is thought to occur over the oceans where oxidant chemistry has received little validation due to a lack of observational constraints. We use observations from the first two deployments of the NASA ATom aircraft campaign during July-August 2016 and January-February 2017 to evaluate the oxidation capacity over the remote oceans and its representation by the GEOS-Chem chemical transport model. The model successfully simulates the magnitude and vertical profile of remote OH within the measurement uncertainties. Comparisons against the drivers of OH production (water vapor, ozone, and NO y concentrations, ozone photolysis frequencies) also show minimal bias, with the exception of wintertime NO y . The severe model overestimate of NO y during this period may indicate insufficient wet scavenging and/or missing loss on sea-salt aerosols. Large uncertainties in these processes require further study to improve simulated NO y partitioning and removal in the troposphere, but preliminary tests suggest that their overall impact could marginally reduce the model bias in tropospheric OH. During the ATom-1 deployment, OH reactivity (OHR) below 3 km is significantly enhanced, and this is not captured by the sum of its measured components (cOHRobs) or by the model (cOHRmod). This enhancement could suggest missing reactive VOCs but cannot be explained by a comprehensive simulation of both biotic and abiotic ocean sources of VOCs. Additional sources of VOC reactivity in this region are difficult to reconcile with the full suite of ATom measurement constraints. The model generally reproduces the magnitude and seasonality of cOHRobs but underestimates the contribution of oxygenated VOCs, mainly acetaldehyde, which is severely underestimated throughout the troposphere despite its calculated lifetime of less than a day. Missing model acetaldehyde in previous studies was attributed to measurement uncertainties that have been largely resolved. Observations of peroxyacetic acid (PAA) provide new support for remote levels of acetaldehyde. The underestimate in both model acetaldehyde and PAA is present throughout the year in both hemispheres and peaks during Northern Hemisphere summer. The addition of ocean sources of VOCs in the model increases cOHRmod by 3% to 9% and improves model-measurement agreement for acetaldehyde, particularly in winter, but cannot resolve the model summertime bias. Doing so would require 100 Tg yr-1 of a long-lived unknown precursor throughout the year with significant additional emissions in the Northern Hemisphere summer. Improving the model bias for remote acetaldehyde and PAA is unlikely to fully resolve previously reported model global biases in OH and methane lifetime, suggesting that future work should examine the sources and sinks of OH over land.

7.
Proc Natl Acad Sci U S A ; 116(23): 11171-11180, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31110019

RESUMEN

The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 ± 0.25 × 106 cm-3), and the biseasonal average North/South Hemisphere ratio is 0.89 ± 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss.

8.
Bull Am Meteorol Soc ; 100(2): 291-306, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33005058

RESUMEN

Coastal regions have historically represented a significant challenge for air quality investigations due to water-land boundary transition characteristics and a paucity of measurements available over water. Prior studies have identified the formation of high levels of ozone over water bodies, such as the Chesapeake Bay, that can potentially recirculate back over land to significantly impact populated areas. Earth-observing satellites and forecast models face challenges in capturing the coastal transition zone where small-scale meteorological dynamics are complex and large changes in pollutants can occur on very short spatial and temporal scales. An observation strategy is presented to synchronously measure pollutants 'over-land' and 'over-water' to provide a more complete picture of chemical gradients across coastal boundaries for both the needs of state and local environmental management and new remote sensing platforms. Intensive vertical profile information from ozone lidar systems and ozonesondes, obtained at two main sites, one over land and the other over water, are complemented by remote sensing and in-situ observations of air quality from ground-based, airborne (both personned and unpersonned), and shipborne platforms. These observations, coupled with reliable chemical transport simulations, such as the NOAA National Air Quality Forecast Capability (NAQFC), are expected to lead to a more fully characterized and complete land-water interaction observing system that can be used to assess future geostationary air quality instruments, such as the NASA Tropospheric Emissions: Monitoring of Pollution (TEMPO) as well as current low earth orbiting satellites, such as the European Space Agency's Sentinel 5-Precursor (S5-P) with its Tropospheric Monitoring Instrument (TROPOMI).

9.
Atmos Meas Tech ; 12(11): 6079-6089, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32514321

RESUMEN

In this work, a new commercially available, laser-based, and ultra-portable formaldehyde (HCHO) gas sensor is characterized, and its usefulness for monitoring HCHO mixing ratios in both indoor and outdoor environments is assessed. Stepped calibrations and intercomparison with well-established laser-induced fluorescence (LIF) instrumentation allow a performance evaluation of the absorption-based, mid-infrared HCHO sensor from Aeris Technologies, Inc. The Aeris sensor displays linear behavior (R2 > 0.940) when compared with LIF instruments from Harvard and NASA Goddard. A non-linear least-squares fitting algorithm developed independently of the sensor's manufacturer to fit the sensor's raw absorption data during post-processing further improves instrument performance. The 3σ limit of detection (LOD) for 2, 15, and 60 min integration times are 2190, 690, and 420 pptv HCHO, respectively, for mixing ratios reported in real-time, though the LOD improves to 1800, 570, and 300 pptv HCHO, respectively, during post-processing. Moreover, the accuracy of the sensor was found to be ±(10% + 0.3) ppbv when compared against LIF instrumentation sampling ambient air. This sub-ppbv precision and level of accuracy are sufficient for most HCHO levels measured in indoor and outdoor environments. While the compact Aeris sensor is currently not a replacement for the most sensitive research-grade instrumentation available, its usefulness for monitoring HCHO is clearly demonstrated.

10.
Geophys Res Lett ; 46(10): 5601-5613, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32606484

RESUMEN

We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models.

11.
Atmos Chem Phys ; 18(4): 2615-2651, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29963079

RESUMEN

Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.

12.
Environ Sci Technol ; 52(13): 7360-7370, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29870662

RESUMEN

Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NO x = NO + NO2). Here, we expand a previously developed fuel-based inventory of motor-vehicle emissions (FIVE) to the continental U.S. for the year 2013, and evaluate our estimates of mobile source emissions with the U.S. Environmental Protection Agency's National Emissions Inventory (NEI) interpolated to 2013. We find that mobile source emissions of NO x and carbon monoxide (CO) in the NEI are higher than FIVE by 28% and 90%, respectively. Using a chemical transport model, we model mobile source emissions from FIVE, and find consistent levels of urban NO x and CO as measured during the Southeast Nexus (SENEX) Study in 2013. Lastly, we assess the sensitivity of ozone (O3) over the Eastern U.S. to uncertainties in mobile source NO x emissions and biogenic volatile organic compound (VOC) emissions. The ground-level O3 is sensitive to reductions in mobile source NO x emissions, most notably in the Southeastern U.S. and during O3 exceedance events, under the revised standard proposed in 2015 (>70 ppb, 8 h maximum). This suggests that decreasing mobile source NO x emissions could help in meeting more stringent O3 standards in the future.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Óxidos de Nitrógeno , Sudeste de Estados Unidos , Emisiones de Vehículos
13.
Environ Sci Technol ; 51(20): 11761-11770, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28976736

RESUMEN

We report enhancements of glyoxal and methylglyoxal relative to carbon monoxide and formaldehyde in agricultural biomass burning plumes intercepted by the NOAA WP-3D aircraft during the 2013 Southeast Nexus and 2015 Shale Oil and Natural Gas Nexus campaigns. Glyoxal and methylglyoxal were measured using broadband cavity enhanced spectroscopy, which for glyoxal provides a highly selective and sensitive measurement. While enhancement ratios of other species such as methane and formaldehyde were consistent with previous measurements, glyoxal enhancements relative to carbon monoxide averaged 0.0016 ± 0.0009, a factor of 4 lower than values used in global models. Glyoxal enhancements relative to formaldehyde were 30 times lower than previously reported, averaging 0.038 ± 0.02. Several glyoxal loss processes such as photolysis, reactions with hydroxyl radicals, and aerosol uptake were found to be insufficient to explain the lower measured values of glyoxal relative to other biomass burning trace gases, indicating that glyoxal emissions from agricultural biomass burning may be significantly overestimated. Methylglyoxal enhancements were three to six times higher than reported in other recent studies, but spectral interferences from other substituted dicarbyonyls introduce an estimated correction factor of 2 and at least a 25% uncertainty, such that accurate measurements of the enhancements are difficult.


Asunto(s)
Agroquímicos , Glioxal , Compuestos Orgánicos , Aeronaves , Biomasa , Monitoreo del Ambiente , Piruvaldehído
14.
J Geophys Res Atmos ; 122(20): 11201-11226, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29527424

RESUMEN

Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HOx. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 pptv near the surface to ~75 pptv in the upper troposphere. Recent convective transport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide, increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NO than more aged air. Output from the CAM-Chem chemistry transport model (2014 meteorology) as well as nine chemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are found to uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. This underestimate of HCHO likely results from a near factor of two underestimate of NO in most models, which strongly suggests errors in NOx emissions inventories and/or in the model chemical mechanisms. Likewise, the lack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead to additional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.

15.
Nat Commun ; 7: 10267, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758808

RESUMEN

Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

16.
Atmos Chem Phys ; 16(21): 13477-13490, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29619044

RESUMEN

Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs) but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS campaign over the Southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the Southeast US (r=0.4-0.8 on a 0.5°×0.5° grid) and in their day-to-day variability (r=0.5-0.8). However, all retrievals are biased low in the mean by 20-51%, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.

17.
Atmos Chem Phys ; 16(21): 13561-13577, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29619045

RESUMEN

Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.

18.
J Geophys Res Atmos ; 121(16): 9849-9861, 2016 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29619286

RESUMEN

We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

19.
Atmos Meas Tech ; 9(9): 4561-4568, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29636831

RESUMEN

Recent laboratory experiments have shown that a first generation isoprene oxidation product, ISOPOOH, can decompose to methyl vinyl ketone (MVK) and methacrolein (MACR) on instrument surfaces, leading to overestimates of MVK and MACR concentrations. Formaldehyde (HCHO) was suggested as a decomposition co-product, raising concern that in situ HCHO measurements may also be affected by an ISOPOOH interference. The HCHO measurement artifact from ISOPOOH for the NASA In Situ Airborne Formaldehyde instrument (ISAF) was investigated for the two major ISOPOOH isomers, (1,2)-ISOPOOH and (4,3)-ISOPOOH, under dry and humid conditions. The dry conversion of ISOPOOH to HCHO was 3±2% and 6±4% for (1,2)-ISOPOOH and (4,3)-ISOPOOH, respectively. Under humid (RH= 40-60%) conditions, conversion to HCHO was 6±4% for (1,2)-ISOPOOH and 10±5% for (4,3)-ISOPOOH. The measurement artifact caused by conversion of ISOPOOH to HCHO in the ISAF instrument was estimated for data obtained on the 2013 September 6 flight of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Prompt ISOPOOH conversion to HCHO was the source for <4% of the observed HCHO, including in the high-isoprene boundary layer. Time-delayed conversion, where previous exposure to ISOPOOH affects measured HCHO later in flight, was conservatively estimated to be < 10% of observed HCHO and is significant only when high ISOPOOH sampling periods immediately precede periods of low HCHO.

20.
Science ; 348(6241): 1326, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26089508

RESUMEN

Ye et al. have determined a maximum nitrous acid (HONO) yield of 3% for the reaction HO2·H2O + NO2, which is much lower than the yield used in our work. This finding, however, does not affect our main result that HONO in the investigated Po Valley region is mainly from a gas-phase source that consumes nitrogen oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...