Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 10(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36016101

RESUMEN

The Ebola virus disease outbreak that occurred in Western Africa from 2013-2016, and subsequent smaller but increasingly frequent outbreaks of Ebola virus disease in recent years, spurred an unprecedented effort to develop and deploy effective vaccines, therapeutics, and diagnostics. This effort led to the U.S. regulatory approval of a diagnostic test, two vaccines, and two therapeutics for Ebola virus disease indications. Moreover, the establishment of fieldable diagnostic tests improved the speed with which patients can be diagnosed and public health resources mobilized. The United States government has played and continues to play a key role in funding and coordinating these medical countermeasure efforts. Here, we describe the coordinated U.S. government response to develop medical countermeasures for Ebola virus disease and we identify lessons learned that may improve future efforts to develop and deploy effective countermeasures against other filoviruses, such as Sudan virus and Marburg virus.

2.
Vaccines (Basel) ; 9(9)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34579282

RESUMEN

The continuing outbreaks of ebola virus disease highlight the ongoing threat posed by filoviruses. Fortunately, licensed vaccines and therapeutics are now available for Zaire ebolavirus. However, effective medical countermeasures, such as vaccines for other filoviruses such as Sudan ebolavirus and the Marburg virus, are presently in early stages of development and, in the absence of a large outbreak, would require regulatory approval via the U.S. Food and Drug Administration (FDA) Animal Rule. The selection of an appropriate animal model and virus challenge isolates for nonclinical studies are critical aspects of the development program. Here, we have focused on the recommendation of challenge isolates for Sudan ebolavirus and Marburg virus. Based on analyses led by the Filovirus Animal and Nonclinical Group (FANG) and considerations for strain selection under the FDA Guidance for the Animal Rule, we propose prototype virus isolates for use in nonclinical challenge studies.

3.
Artículo en Inglés | MEDLINE | ID: mdl-29670861

RESUMEN

Francisella tularensis is a highly infectious Gram-negative bacterium that is the etiologic agent of tularemia in animals and humans and a Tier 1 select agent. The natural incidence of pneumonic tularemia worldwide is very low; therefore, it is not feasible to conduct clinical efficacy testing of tularemia medical countermeasures (MCM) in human populations. Development and licensure of tularemia therapeutics and vaccines need to occur under the Food and Drug Administration's (FDA's) Animal Rule under which efficacy studies are conducted in well-characterized animal models that reflect the pathophysiology of human disease. The Tularemia Animal Model Qualification (AMQ) Working Group is seeking qualification of the cynomolgus macaque (Macaca fascicularis) model of pneumonic tularemia under Drug Development Tools Qualification Programs with the FDA based upon the results of studies described in this manuscript. Analysis of data on survival, average time to death, average time to fever onset, average interval between fever and death, and bacteremia; together with summaries of clinical signs, necropsy findings, and histopathology from the animals exposed to aerosolized F. tularensis Schu S4 in five natural history studies and one antibiotic efficacy study form the basis for the proposed cynomolgus macaque model. Results support the conclusion that signs of pneumonic tularemia in cynomolgus macaques exposed to 300-3,000 colony forming units (cfu) aerosolized F. tularensis Schu S4, under the conditions described herein, and human pneumonic tularemia cases are highly similar. Animal age, weight, and sex of animals challenged with 300-3,000 cfu Schu S4 did not impact fever onset in studies described herein. This study summarizes critical parameters and endpoints of a well-characterized cynomolgus macaque model of pneumonic tularemia and demonstrates this model is appropriate for qualification, and for testing efficacy of tularemia therapeutics under Animal Rule.


Asunto(s)
Modelos Animales de Enfermedad , Francisella tularensis/fisiología , Macaca fascicularis/fisiología , Neumonía/microbiología , Tularemia/microbiología , Animales , Temperatura Corporal , Femenino , Humanos , Macaca fascicularis/genética , Masculino , Neumonía/complicaciones , Neumonía/patología , Neumonía/fisiopatología , Resultado del Tratamiento , Tularemia/complicaciones , Tularemia/patología , Tularemia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...