Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Virol J ; 21(1): 40, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341597

RESUMEN

Since the onset of the coronavirus disease (COVID-19) pandemic in Belgium, UZ/KU Leuven has played a crucial role as the National Reference Centre (NRC) for respiratory pathogens, to be the first Belgian laboratory to develop and implement laboratory developed diagnostic assays for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and later to assess the quality of commercial kits. To meet the growing demand for decentralised testing, both clinical laboratories and government-supported high-throughput platforms were gradually deployed across Belgium. Consequently, the role of the NRC transitioned from a specialised testing laboratory to strengthening capacity and coordinating quality assurance. Here, we outline the measures taken by the NRC, the national public health institute Sciensano and the executing clinical laboratories to ensure effective quality management of molecular testing throughout the initial two years of the pandemic (March 2020 to March 2022).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Bélgica/epidemiología , Prueba de COVID-19 , Pandemias , Técnicas de Laboratorio Clínico , Técnicas de Diagnóstico Molecular
2.
Emerg Infect Dis ; 30(1): 141-145, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38147067

RESUMEN

In a 2-year study in Leuven, Belgium, we investigated the use of wastewater sampling to assess community spread of respiratory viruses. Comparison with the number of positive clinical samples demonstrated that wastewater data reflected circulation levels of typical seasonal respiratory viruses, such as influenza, respiratory syncytial virus, and enterovirus D68.


Asunto(s)
Enterovirus Humano D , Gripe Humana , Virus Sincitial Respiratorio Humano , Humanos , Bélgica/epidemiología , Aguas Residuales , Virus Sincitial Respiratorio Humano/genética
3.
J Med Virol ; 95(10): e29127, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37772540

RESUMEN

During the Belgian winter and spring season 2022-2023, we investigated the potential of used paper tissue (UPT) as a noninvasive sampling method for the diagnosis of acute respiratory infections. Screening for respiratory pathogens was done using an in-house developed respiratory panel for simultaneous detection of 22 respiratory viruses and seven nonviral pathogens. The method allowed the identification and typing of respiratory pathogens in symptomatic individuals, as well as in collective samples taken at a community level. Pathogens that were identified in nasal swabs could also be detected in concurrent UPT from the same patient. In all cases that tested positive on an antigen-detection rapid diagnostic test, the corresponding virus could be detected in UPT. The collection of UPT could be useful in epidemiological surveillance of severe acute respiratory syndrome coronavirus 2 and other coronaviruses, as well as other respiratory pathogens such as influenzavirus, respiratory syncytial virus, entero/rhinoviruses including EV-D68, parainfluenzaviruses, and Streptococcus pneumoniae. Multiple respiratory pathogens could be detected in UPTs of collectivities, confirming its applicability for community testing. This is especially interesting for screening in nursing homes, centers for the disabled, schools or other settings were taking nasal or nasopharyngeal samples is cumbersome.

4.
Virus Genes ; 59(6): 795-800, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37589804

RESUMEN

Mpox is a viral zoonosis with endemic circulation in animals and humans in some West and Central African countries. The disease was imported a few times in the past to countries outside the African continent through infected animals or travelers, one of which resulted in an unprecedented global outbreak sustained by human-to-human transmission in 2022. Although timely and reliable diagnosis is a cornerstone of any disease control, availability of accurate diagnostic assays and comparative performance studies of diagnostic assays remains limited despite of the long-known identification of monkeypox virus (MPXV) as a human pathogen since 1970. We laboratory-developed a real-time PCR test (LDT) and evaluated its performance against the commercial TaqMan™ Monkeypox Virus Microbe Detection Assay (Applied Biosystems, Cat A50137). The limit of detection of the LDT was established at 1.2 genome copies/ml. The sensitivity and specificity of both assays were 99.14% and 100%, respectively, and both are capable of detecting both clade I and clade II of MPXV. Our results demonstrate the validity and accuracy of the LDT for confirmation of MPXV infection from lesion swabs samples.


Asunto(s)
Monkeypox virus , Mpox , Animales , Humanos , Monkeypox virus/genética , Mpox/diagnóstico , Brotes de Enfermedades , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad
5.
EBioMedicine ; 92: 104608, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37224768

RESUMEN

BACKGROUND: SARS-CoV-2 is a single-stranded positive-sense RNA virus. Several negative-sense SARS-CoV-2 RNA species, both full-length genomic and subgenomic, are produced transiently during viral replication. Methodologies for rigorously characterising cell tropism and visualising ongoing viral replication at single-cell resolution in histological sections are needed to assess the virological and pathological phenotypes of future SARS-CoV-2 variants. We aimed to provide a robust methodology for examining the human lung, the major target organ of this RNA virus. METHODS: A prospective cohort study took place at the University Hospitals Leuven in Leuven, Belgium. Lung samples were procured postmortem from 22 patients who died from or with COVID-19. Tissue sections were fluorescently stained with the ultrasensitive single-molecule RNA in situ hybridisation platform of RNAscope combined with immunohistochemistry followed by confocal imaging. FINDINGS: We visualised perinuclear RNAscope signal for negative-sense SARS-CoV-2 RNA species in ciliated cells of the bronchiolar epithelium of a patient who died with COVID-19 in the hyperacute phase of the infection, and in ciliated cells of a primary culture of human airway epithelium that had been infected experimentally with SARS-CoV-2. In patients who died between 5 and 13 days after diagnosis of the infection, we detected RNAscope signal for positive-sense but not for negative-sense SARS-CoV-2 RNA species in pneumocytes, macrophages, and among debris in the alveoli. SARS-CoV-2 RNA levels decreased after a disease course of 2-3 weeks, concomitant with a histopathological change from exudative to fibroproliferative diffuse alveolar damage. Taken together, our confocal images illustrate the complexities stemming from traditional approaches in the literature to characterise cell tropism and visualise ongoing viral replication solely by the surrogate parameters of nucleocapsid-immunoreactive signal or in situ hybridisation for positive-sense SARS-CoV-2 RNA species. INTERPRETATION: Confocal imaging of human lung sections stained fluorescently with commercially available RNAscope probes for negative-sense SARS-CoV-2 RNA species enables the visualisation of viral replication at single-cell resolution during the acute phase of the infection in COVID-19. This methodology will be valuable for research on future SARS-CoV-2 variants and other respiratory viruses. FUNDING: Max Planck Society, Coronafonds UZ/KU Leuven, European Society for Organ Transplantation.


Asunto(s)
COVID-19 , Humanos , Pulmón , Estudios Prospectivos , ARN Viral , SARS-CoV-2 , ARN Subgenómico
6.
Nat Aging ; 3(6): 722-733, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37217661

RESUMEN

Coronavirus Disease 2019 (COVID-19) vaccination has resulted in excellent protection against fatal disease, including in older adults. However, risk factors for post-vaccination fatal COVID-19 are largely unknown. We comprehensively studied three large nursing home outbreaks (20-35% fatal cases among residents) by combining severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) aerosol monitoring, whole-genome phylogenetic analysis and immunovirological profiling of nasal mucosa by digital nCounter transcriptomics. Phylogenetic investigations indicated that each outbreak stemmed from a single introduction event, although with different variants (Delta, Gamma and Mu). SARS-CoV-2 was detected in aerosol samples up to 52 d after the initial infection. Combining demographic, immune and viral parameters, the best predictive models for mortality comprised IFNB1 or age, viral ORF7a and ACE2 receptor transcripts. Comparison with published pre-vaccine fatal COVID-19 transcriptomic and genomic signatures uncovered a unique IRF3 low/IRF7 high immune signature in post-vaccine fatal COVID-19 outbreaks. A multi-layered strategy, including environmental sampling, immunomonitoring and early antiviral therapy, should be considered to prevent post-vaccination COVID-19 mortality in nursing homes.


Asunto(s)
COVID-19 , Humanos , Anciano , Filogenia , COVID-19/epidemiología , SARS-CoV-2/genética , Casas de Salud , Vacunación , Brotes de Enfermedades/prevención & control
7.
Euro Surveill ; 28(9)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862099

RESUMEN

BackgroundLateral flow antigen-detection rapid diagnostic tests (Ag-RDTs) for viral infections constitute a fast, cheap and reliable alternative to nucleic acid amplification tests (NAATs). Whereas leftover material from NAATs can be employed for genomic analysis of positive samples, there is a paucity of information on whether viral genetic characterisation can be achieved from archived Ag-RDTs.AimTo evaluate the possibility of retrieving leftover material of several viruses from a range of Ag-RDTs, for molecular genetic analysis.MethodsArchived Ag-RDTs which had been stored for up to 3 months at room temperature were used to extract viral nucleic acids for subsequent RT-qPCR, Sanger sequencing and Nanopore whole genome sequencing. The effects of brands of Ag-RDT and of various ways to prepare Ag-RDT material were evaluated.ResultsSARS-CoV-2 nucleic acids were successfully extracted and sequenced from nine different brands of Ag-RDTs for SARS-CoV-2, and for five of these, after storage for 3 months at room temperature. The approach also worked for Ag-RDTs for influenza virus (n = 3 brands), as well as for rotavirus and adenovirus 40/41 (n = 1 brand). The buffer of the Ag-RDT had an important influence on viral RNA yield from the test strip and the efficiency of subsequent sequencing.ConclusionOur finding that the test strip in Ag-RDTs is suited to preserve viral genomic material, even for several months at room temperature, and therefore can serve as source material for genetic characterisation could help improve global coverage of genomic surveillance for SARS-CoV-2 as well as for other viruses.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , Bélgica , Prueba de Diagnóstico Rápido , COVID-19/diagnóstico , SARS-CoV-2/genética , Genómica , Prueba de COVID-19
8.
J Med Virol ; 95(2): e28587, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36799251

RESUMEN

Wastewater surveillance plays an important role in the management of the coronavirus disease 2019 (COVID-19) pandemic all over the world. Using different wastewater collection points in Leuven, we wanted to investigate the use of wastewater surveillance as an early warning system for an uprise of infections and as a tool to follow the circulation of specific variants of concern (VOCs) in particular geographic areas. Wastewater samples were collected from local neighborhood sewers and from a large regional wastewater treatment plant (WWTP) in the area of Leuven, Belgium. After virus concentration, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was quantified by real-time quantitative polymerase chain reaction (RT-qPCR) and normalized with the human fecal indicator pepper mild mottle virus (PMMoV). A combination of multiplex RT-qPCR assays was used to detect signature mutations of circulating VOCs. Fecal virus shedding of SARS-CoV-2 variants was measured in feces samples of hospitalized patients. In two residential sampling sites, a rise in wastewater SARS-CoV-2 concentration preceded peaks in positive cases. In the WWTP, viral load peaks were seen concomitant with the consecutive waves of positive cases caused by the original Wuhan SARS-CoV-2 strain and subsequent VOCs. During the Omicron BA.1 wave, the wastewater viral load increased to a lesser degree, even after normalization of SARS-CoV-2 concentration using PMMoV. This might be attributable to a lower level of fecal excretion of this variant. Circulation of SARS-CoV-2 VOCs Alpha, Delta, Omicron BA1/BA.2, and BA.4/BA.5 could be detected based on the presence of specific key mutations. The shift in variants was noticeable in the wastewater, with key mutations of two different variants being present simultaneously during the transition period. Wastewater-based surveillance is a sensitive tool to monitor SARS-CoV-2 circulation levels and VOCs in larger regions. In times of reduced test capacity, this can prove to be highly valuable. Differences in excretion levels of various SARS-CoV-2 variants should however be taken into account when using wastewater surveillance to monitor SARS-CoV-2 circulation levels in the population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Bélgica , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , ARN Viral
10.
Eur J Neurol ; 29(10): 3117-3123, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35763378

RESUMEN

BACKGROUND AND PURPOSE: Enterovirus infections pose a serious threat for patients with humoral deficiencies and may be lethal, whilst the efficacy of proposed treatment options such as corticosteroids, intravenous immunoglobulins and fluoxetine remains debated. METHODS: Viral clearance was investigated in a patient with rituximab-induced B-cell depletion and chronic echovirus 13 (E13) meningoencephalitis/myofasciitis in response to intravenous immunoglobulins and fluoxetine using sequential semi-quantitative E13 viral load measurements by real-time reverse transcription polymerase chain reaction. Fluoxetine concentrations in plasma and cerebrospinal fluid were determined by liquid chromatography mass spectrometry. RESULTS: Intravenous immunoglobulins appeared ineffective in this case of E13 infection, whereas virus clearance in cerebrospinal fluid was obtained after 167 days of oral fluoxetine. Since treatment with corticosteroids resulted in a flare of symptoms, rechallenge with viral load measurements was not attempted. CONCLUSION: In this report of a patient with rituximab-associated chronic echovirus 13 meningoencephalitis, viral clearance in response to single treatment options is assessed for the first time. Our observations further support the in vivo efficacy of fluoxetine against enteroviral infections. More research is needed to establish its efficacy in different enterovirus strains.


Asunto(s)
Infecciones por Echovirus , Infecciones por Enterovirus , Meningitis Aséptica , Meningoencefalitis , Miositis , Antivirales , Infecciones por Echovirus/líquido cefalorraquídeo , Enterovirus Humano B , Fluoxetina/uso terapéutico , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Meningoencefalitis/líquido cefalorraquídeo , Meningoencefalitis/tratamiento farmacológico , Rituximab/uso terapéutico
11.
Emerg Infect Dis ; 28(8): 1729-1731, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35738346

RESUMEN

Illustrated by a clinical case supplemented by epidemiologic data, early reinfections with SARS-CoV-2 Omicron BA.1 after infection with Delta variant, and reinfection with Omicron BA.2 after Omicron BA.1 infection, can occur within 60 days, especially in young, unvaccinated persons. The case definition of reinfection, which influences retesting policies, should be reconsidered.


Asunto(s)
COVID-19 , Reinfección , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Políticas , SARS-CoV-2
12.
Viruses ; 14(6)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35746671

RESUMEN

We report two clusters of SARS-CoV-2 B.1.617.2 (Delta variant) infections in a group of 41 Indian nursing students who travelled from New Delhi, India, to Belgium via Paris, France. All students tested negative before departure and had a second negative antigen test upon arrival in Paris. Upon arrival in Belgium, the students were quarantined in eight different houses. Four houses remained COVID-free during the 24 days of follow-up, while all 27 residents of the other four houses developed an infection during quarantine, including the four residents who were fully vaccinated and the two residents who were partially vaccinated. Genome sequencing revealed two distinct clusters affecting one and three houses, respectively. In this group of students, vaccination status did not seem to prevent infection nor decrease the viral load. No severe symptoms were reported. Extensive contact tracing and 3 months of nationwide genomic surveillance confirmed that these outbreaks were successfully contained and did not contribute to secondary community transmission in Belgium. These clusters highlight the importance of repeated testing and quarantine measures among travelers coming from countries experiencing a surge of infections, as all infections were detected 6 days or more after arrival.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Cuarentena , SARS-CoV-2/genética , Estudiantes
13.
PLoS Pathog ; 18(5): e1010515, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35639811

RESUMEN

Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome ('whole genome') sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68's rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future.


Asunto(s)
COVID-19 , Enterovirus Humano D , Infecciones por Enterovirus , Infecciones del Sistema Respiratorio , Adulto , Anciano , Niño , Demografía , Brotes de Enfermedades , Enterovirus Humano D/genética , Infecciones por Enterovirus/epidemiología , Humanos , Filogenia , SARS-CoV-2
14.
J Virol Methods ; 304: 114512, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35257682

RESUMEN

SARS-CoV-2 has kept the world in suspense for almost 2 years now. The virus spread rapidly worldwide and several variants of concern have emerged: Alpha, Beta, Gamma, Delta and recently Omicron. A rapid method to detect key mutations is needed because these variants may jeopardize the effectiveness of immune protection following vaccination or past infection. This article describes an easy, cheap and fast method for the detection of mutations in the spike protein that are indicative for specific variants. This method can easily distinguish Omicron from other variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética
15.
Virus Evol ; 7(1): veab036, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34221451

RESUMEN

Hepatitis C virus (HCV; genus Hepacivirus) represents a major public health problem, infecting about three per cent of the human population. Because no animal reservoir carrying closely related hepaciviruses has been identified, the zoonotic origins of HCV still remain unresolved. Motivated by recent findings of divergent hepaciviruses in rodents and a plausible African origin of HCV genotypes, we have screened a large collection of small mammals samples from seven sub-Saharan African countries. Out of 4,303 samples screened, eighty were found positive for the presence of hepaciviruses in twenty-nine different host species. We, here, report fifty-six novel genomes that considerably increase the diversity of three divergent rodent hepacivirus lineages. Furthermore, we provide strong evidence for hepacivirus co-infections in rodents, which were exclusively found in four sampled species of brush-furred mice. We also detect evidence of recombination within specific host lineages. Our study expands the available hepacivirus genomic data and contributes insights into the relatively deep evolutionary history of these pathogens in rodents. Overall, our results emphasize the importance of rodents as a potential hepacivirus reservoir and as models for investigating HCV infection dynamics.

16.
BMJ Paediatr Open ; 5(1): e000971, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34192193

RESUMEN

Background: In Belgium, schools closed during the first lockdown in March 2020, with a partial reopening in May. They fully reopened in September. During the summer, infections started to increase in the general population, speeding up in September. Some measures were taken to limit social contacts but those were insufficient to mitigate the exponential rise of infections in October. Children were still receiving all lessons at school at that time and it was questioned whether this position was tenable. We systematically compared the benefits and harms of closing primary and secondary schools and developed a recommendation. Methods: A multidisciplinary panel, including school pupils and teachers, educational experts, clinicians and researchers, produced this recommendation in compliance with the standards for trustworthy rapid guidelines. The recommendation is based on data collected through national surveillance or studies from Belgium, and supported by a rapid literature review. Results: Closing schools during the first lockdown probably resulted in a large learning delay and possibly led to more cases of child abuse. We are uncertain about the effect on the infection rate, hospitalisations, transmission rates, mental health of children, teachers and parents. The panel concluded that the balance of benefits and harms of closing schools clearly shifts against closing schools. Detrimental effects are even worse for vulnerable children. This recommendation is affected by the local virus circulation. Conclusion: The guideline panel issues a strong recommendation against closing schools when the virus circulation is low to moderate, and a weak recommendation against closing schools when the virus circulation is high. It does not apply when the school system cannot function due to lack of teachers, too many children who are at home or a shortage of support services. As the results of international studies are consistent with Belgian study results, this recommendation may also be relevant internationally.


Asunto(s)
COVID-19 , Personal Docente , Niño , Control de Enfermedades Transmisibles , Humanos , SARS-CoV-2 , Instituciones Académicas
20.
Infect Genet Evol ; 81: 104267, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32114255

RESUMEN

Because of the enormous variation in their genome sequence, genotyping enteroviruses by standard methods can prove to be quite challenging. Nanopore sequencing offers the potential to overcome the limitations of older techniques, but thus far, only amplicon-based strategies have been used to sequence complete enterovirus genomes. By combining a sequence-independent, single primer amplification (SISPA) for cDNA generation with next-generation sequencing using the Oxford Nanopore MinION, complete enterovirus genomes can be obtained in an easy-to-use, sequence-independent manner. To demonstrate its usability, we applied this technique to determine the complete genome sequence of an enterovirus C104 strain, representing the first documented occurrence of this uncommon enterovirus strain in Belgium.


Asunto(s)
Infecciones por Enterovirus/virología , Enterovirus/genética , Genoma Viral/genética , Bélgica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Secuenciación de Nanoporos/métodos , Nanoporos , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...