Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(4): pgae081, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560528

RESUMEN

Globally, the most intense uptake of anthropogenic carbon dioxide (CO2) occurs in the Atlantic north of 50°N, and it has been predicted that atmospheric CO2 sequestration in the Arctic Ocean will increase as a result of ice-melt and increased primary production. However, little is known about the impact of pan-Arctic sea-ice decline on carbon export processes. We investigated the potential ballasting effect of sea-ice derived material on settling aggregates and carbon export in the Fram Strait by combining 13 years of vertical flux measurements with benthic eDNA analysis, laboratory experiments, and tracked sea-ice distributions. We show that melting sea-ice in the Fram Strait releases cryogenic gypsum and terrigenous material, which ballasts sinking organic aggregates. As a result, settling velocities of aggregates increased ≤10-fold, resulting in ≤30% higher carbon export in the vicinity of the melting ice-edge. Cryogenic gypsum is formed in first-year sea-ice, which is predicted to increase as the Arctic is warming. Simultaneously, less sea-ice forms over the Arctic shelves, which is where terrigenous material is incorporated into sea-ice. Supporting this, we found that terrigenous fluxes from melting sea-ice in the Fram Strait decreased by >80% during our time-series. Our study suggests that terrigenous flux will eventually cease when enhanced sea-ice melt disrupts trans-Arctic sea-ice transport and thus, limit terrigenous-ballasted carbon flux. However, the predicted increase in Arctic primary production and gypsum formation may enhance gypsum-ballasted carbon flux and compensate for lowered terrigenous fluxes. It is thus unclear if sea-ice loss will reduce carbon export in the Arctic Ocean.

3.
Nature ; 590(7844): 97-102, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536651

RESUMEN

Following early hypotheses about the possible existence of Arctic ice shelves in the past1-3, the observation of specific erosional features as deep as 1,000 metres below the current sea level confirmed the presence of a thick layer of ice on the Lomonosov Ridge in the central Arctic Ocean and elsewhere4-6. Recent modelling studies have addressed how an ice shelf may have built up in glacial periods, covering most of the Arctic Ocean7,8. So far, however, there is no irrefutable marine-sediment characterization of such an extensive ice shelf in the Arctic, raising doubt about the impact of glacial conditions on the Arctic Ocean. Here we provide evidence for at least two episodes during which the Arctic Ocean and the adjacent Nordic seas were not only covered by an extensive ice shelf, but also filled entirely with fresh water, causing a widespread absence of thorium-230 in marine sediments. We propose that these Arctic freshwater intervals occurred 70,000-62,000 years before present and approximately 150,000-131,000 years before present, corresponding to portions of marine isotope stages 4 and 6. Alternative interpretations of the first occurrence of the calcareous nannofossil Emiliania huxleyi in Arctic sedimentary records would suggest younger ages for the older interval. Our approach explains the unexpected minima in Arctic thorium-230 records9 that have led to divergent interpretations of sedimentation rates10,11 and hampered their use for dating purposes. About nine million cubic kilometres of fresh water is required to explain our isotopic interpretation, a calculation that we support with estimates of hydrological fluxes and altered boundary conditions. A freshwater mass of this size-stored in oceans, rather than land-suggests that a revision of sea-level reconstructions based on freshwater-sensitive stable oxygen isotopes may be required, and that large masses of fresh water could be delivered to the north Atlantic Ocean on very short timescales.


Asunto(s)
Agua Dulce/análisis , Cubierta de Hielo/química , Océanos y Mares , Regiones Árticas , Foraminíferos/aislamiento & purificación , Fósiles , Sedimentos Geológicos/química , Historia Antigua , Isótopos/análisis , Plancton/aislamiento & purificación , Protactinio/análisis , Torio/análisis , Factores de Tiempo
4.
Sci Rep ; 10(1): 15102, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934321

RESUMEN

Deciphering the evolution of marine plankton is typically based on the study of microfossil groups. Cryptic speciation is common in these groups, and large intragenomic variations occur in ribosomal RNA genes of many morphospecies. In this study, we correlated the distribution of ribosomal amplicon sequence variants (ASVs) with paleoceanographic changes by analyzing the high-throughput sequence data assigned to Neogloboquadrina pachyderma in a 140,000-year-old sediment core from the Arctic Ocean. The sedimentary ancient DNA demonstrated the occurrence of various N. pachyderma ASVs whose occurrence and dominance varied through time. Most remarkable was the striking appearance of ASV18, which was nearly absent in older sediments but became dominant during the last glacial maximum and continues to persist today. Although the molecular ecology of planktonic foraminifera is still poorly known, the analysis of their intragenomic variations through time has the potential to provide new insight into the evolution of marine biodiversity and may lead to the development of new and important paleoceanographic proxies.


Asunto(s)
Biodiversidad , ADN Antiguo/análisis , Foraminíferos/crecimiento & desarrollo , Foraminíferos/genética , Variación Genética , Genómica/métodos , Sedimentos Geológicos/análisis , Regiones Árticas , Evolución Molecular , Foraminíferos/clasificación , Fósiles , Paleografía , Filogenia
6.
Sci Rep ; 6: 38529, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27922097

RESUMEN

Slope failure like in the Hinlopen/Yermak Megaslide is one of the major geohazards in a changing Arctic environment. We analysed hydroacoustic and 2D high-resolution seismic data from the apparently intact continental slope immediately north of the Hinlopen/Yermak Megaslide for signs of past and future instabilities. Our new bathymetry and seismic data show clear evidence for incipient slope instability. Minor slide deposits and an internally-deformed sedimentary layer near the base of the gas hydrate stability zone imply an incomplete failure event, most probably about 30000 years ago, contemporaneous to or shortly after the Hinlopen/Yermak Megaslide. An active gas reservoir at the base of the gas hydrate stability zone demonstrate that over-pressured fluids might have played a key role in the initiation of slope failure at the studied slope, but more importantly also for the giant HYM slope failure. To date, it is not clear, if the studied slope is fully preconditioned to fail completely in future or if it might be slowly deforming and creeping at present. We detected widespread methane seepage on the adjacent shallow shelf areas not sealed by gas hydrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...