Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pulm Pharmacol Ther ; 83: 102267, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972706

RESUMEN

The tyrosine kinase inhibitor nintedanib has been recently approved for the treatment of Interstitial Lung Diseases (ILDs) that manifest a progressive fibrosis phenotype other than Idiopathic pulmonary Fibrosis (IPF). Nintedanib reduces the development of lung fibrosis in various animal models resembling features of PF-ILD and in vitro, it inhibits the fibrosing phenotype of human lung fibroblasts (HLFs) isolated from patients with IPF. To get insight on the cellular and molecular mechanisms that drive the clinical efficiency of nintedanib in patients with non-IPF PF-ILD, we investigated its effects on the fibrosing functions of HLFs derived from patients with PF-hypersensitivity pneumonitis (PF-HP, n = 7), PF-sarcoidosis (n = 5) and pleuroparenchymal fibroelastosis (PPFE, n = 4). HLFs were treated with nintedanib (10 nM-1 µM) and then stimulated with PDGF-BB (25-50 ng/ml) or TGF-ß1 (1 ng/ml) for 24-72 h to assess proliferation and migration or differentiation. At nanomolar concentrations, nintedanib reduced the levels of PDGF receptor and ERK1/2 phosphorylation, the proliferation and the migration of PF-HP, PF-sarcoidosis and PPFE HLFs stimulated with PDGF-BB. Moreover, nintedanib also attenuates the myofibroblastic differentiation driven by TGF-ß1 but only when it is used at 1 µM. The drug reduced the phosphorylation of SMAD2/3 and decreased the induction of collagen, fibronectin and α-smooth muscle actin expression induced by TGF-ß1. In conclusion, our results demonstrate that nintedanib counteracts fundamental fibrosing functions of lung fibroblasts derived from patients with PF-HP, PF-sarcoidosis and PPFE, at concentrations previously reported to inhibit control and IPF HLFs. Such effects may contribute to its clinical benefit in patients suffering from these irreversible ILDs.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Sarcoidosis , Animales , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Becaplermina , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/patología , Pulmón , Fibrosis , Fibrosis Pulmonar Idiopática/patología , Fibroblastos/metabolismo , Progresión de la Enfermedad
2.
3.
Biomedicines ; 10(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36289891

RESUMEN

Sarcoglycanopathies are a group of recessive limb-girdle muscular dystrophies, characterized by progressive muscle weakness. Sarcoglycan deficiency produces instability of the sarcolemma during muscle contraction, leading to continuous muscle fiber injury eventually producing fiber loss and replacement by fibro-adipose tissue. Therapeutic strategies aiming to reduce fibro-adipose expansion could be effective in muscular dystrophies. We report the positive effect of nintedanib in a murine model of alpha-sarcoglycanopathy. We treated 14 Sgca-/- mice, six weeks old, with nintedanib 50 mg/kg every 12 h for 10 weeks and compared muscle function and histology with 14 Sgca-/- mice treated with vehicle and six wild-type littermate mice. Muscle function was assessed using a treadmill and grip strength. A cardiac evaluation was performed by echocardiography and histological study. Structural analysis of the muscles, including a detailed study of the fibrotic and inflammatory processes, was performed using conventional staining and immunofluorescence. In addition, proteomics and transcriptomics studies were carried out. Nintedanib was well tolerated by the animals treated, although we observed weight loss. Sgca-/- mice treated with nintedanib covered a longer distance on the treadmill, compared with non-treated Sgca-/- mice, and showed higher strength in the grip test. Moreover, nintedanib improved the muscle architecture of treated mice, reducing the degenerative area and the fibrotic reaction that was associated with a reversion of the cytokine expression profile. Nintedanib improved muscle function and muscle architecture by reducing muscle fibrosis and degeneration and reverting the chronic inflammatory environment suggesting that it could be a useful therapy for patients with alpha-sarcoglycanopathy.

4.
Respir Res ; 23(1): 201, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927669

RESUMEN

BACKGROUND: Aberrant extracellular matrix (ECM) deposition and remodelling is important in the disease pathogenesis of pulmonary fibrosis (PF). We characterised neoepitope biomarkers released by ECM turnover in lung tissue from bleomycin-treated rats and patients with PF and analysed the effects of two antifibrotic drugs: nintedanib and pirfenidone. METHODS: Precision-cut lung slices (PCLS) were prepared from bleomycin-treated rats or patients with PF. PCLS were incubated with nintedanib or pirfenidone for 48 h, and levels of neoepitope biomarkers of type I, III and VI collagen formation or degradation (PRO-C1, PRO-C3, PRO-C6 and C3M) as well as fibronectin (FBN-C) were assessed in the culture supernatants. RESULTS: In rat PCLS, incubation with nintedanib led to a reduction in C3M, reflecting type III collagen degradation. In patient PCLS, incubation with nintedanib reduced the levels of PRO-C3 and C3M, thus showing effects on both formation and degradation of type III collagen. Incubation with pirfenidone had a marginal effect on PRO-C3. There were no other notable effects of either nintedanib or pirfenidone on the other neoepitope biomarkers studied. CONCLUSIONS: This study demonstrated that nintedanib modulates neoepitope biomarkers of type III collagen turnover and indicated that C3M is a promising translational neoepitope biomarker of PF in terms of therapy assessment.


Asunto(s)
Fibrosis Pulmonar Idiopática , Fibrosis Pulmonar , Animales , Biomarcadores , Bleomicina/toxicidad , Colágeno Tipo III/metabolismo , Complemento C3/farmacología , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Indoles , Pulmón/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Ratas
5.
Front Pharmacol ; 13: 838449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517783

RESUMEN

The anti-inflammatory and immunomodulatory abilities of oral selective phosphodiesterase 4 (PDE4) inhibitors enabled the approval of roflumilast and apremilast for use in chronic obstructive pulmonary disease and psoriasis/psoriatic arthritis, respectively. However, the antifibrotic potential of PDE4 inhibitors has not yet been explored clinically. BI 1015550 is a novel PDE4 inhibitor showing a preferential enzymatic inhibition of PDE4B. In vitro, BI 1015550 inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α) and phytohemagglutinin-induced interleukin-2 synthesis in human peripheral blood mononuclear cells, as well as LPS-induced TNF-α synthesis in human and rat whole blood. In vivo, oral BI 1015550 shows potent anti-inflammatory activity in mice by inhibiting LPS-induced TNF-α synthesis ex vivo and in Suncus murinus by inhibiting neutrophil influx into bronchoalveolar lavage fluid stimulated by nebulized LPS. In Suncus murinus, PDE4 inhibitors induce emesis, a well-known gastrointestinal side effect limiting the use of PDE4 inhibitors in humans, and the therapeutic ratio of BI 1015550 appeared to be substantially improved compared with roflumilast. Oral BI 1015550 was also tested in two well-known mouse models of lung fibrosis (induced by either bleomycin or silica) under therapeutic conditions, and appeared to be effective by modulating various model-specific parameters. To better understand the antifibrotic potential of BI 1015550 in vivo, its direct effect on human fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) was investigated in vitro. BI 1015550 inhibited transforming growth factor-ß-stimulated myofibroblast transformation and the mRNA expression of various extracellular matrix proteins, as well as basic fibroblast growth factor plus interleukin-1ß-induced cell proliferation. Nintedanib overall was unremarkable in these assays, but interestingly, the inhibition of proliferation was synergistic when it was combined with BI 1015550, leading to a roughly 10-fold shift of the concentration-response curve to the left. In summary, the unique preferential inhibition of PDE4B by BI 1015550 and its anticipated improved tolerability in humans, plus its anti-inflammatory and antifibrotic potential, suggest BI 1015550 to be a promising oral clinical candidate for the treatment of IPF and other fibro-proliferative diseases.

6.
Toxicol Appl Pharmacol ; 441: 115972, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35276128

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal interstitial lung disease. Currently, no treatment can block or reverse the development of lung fibrosis in patients suffering from IPF. Recent studies indicate that arsenic trioxide (ATO), a safe, effective anti-cancer pro-oxidant drug, prevents the differentiation of normal human lung fibroblasts (NHLFs) in vitro and reduces experimental pulmonary fibrosis in vivo. In this context, we investigated the anti-fibrotic effects of ATO on the main fibrosis functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and non-IPF (control) HLFs were incubated with 0.01-1 µM ATO and stimulated with pro-fibrotic factors (PDGF-BB or TGF-ß1). We measured their rates of proliferation, migration and differentiation and the cell stress response triggered by ATO. ATO did not affect cell viability but strongly inhibited the proliferation and migration of PDGF-BB-stimulated IPF and control HLFs. ATO also prevented myofibroblastic differentiation, as assessed by the expression of α-smooth muscle actin (α-SMA) and collagen-1, and the phosphorylation of SMAD2/3 in TGF-ß1-stimulated HLFs. These antifibrotic effects were associated with increased expression of the transcription factor NRF2 and its target genes NQO1 and HMOX1. Genetic silencing of NRF2 inhibited the ATO-induced cell stress response but did not prevent the ATO-dependent inhibition of α-SMA expression in TGF-ß1-stimulated HLFs. The results demonstrate that ATO, at concentrations similar to exposure in blood plasma of ATO-treated cancer patients, counteracted pro-fibrotic activities of HLFs from IPF patients. We propose to consider ATO for clinical exploration to define the therapeutic potential in patients with IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Trióxido de Arsénico/farmacología , Becaplermina/farmacología , Fibroblastos , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón , Factor 2 Relacionado con NF-E2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
8.
Clin Exp Rheumatol ; 39 Suppl 131(4): 134-141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33886452

RESUMEN

OBJECTIVES: Interstitial lung disease (ILD) is a key driver of mortality in patients with systemic sclerosis (SSc). A lack of approved treatments encompasses a high unmet medical need. Nintedanib has recently been approved for treatment in SSc-associated ILD (SSc-ILD) following SENSCIS®, a Phase III clinical trial showing that nintedanib slows the loss of pulmonary function in patients with SSc-ILD relative to placebo, as measured by annual rate of decline in forced vital capacity over 52 weeks. The aim of this study was to compare the activity of nintedanib and mycophenolate mofetil (MMF) in a transgenic Fra2 mouse model of SSc-ILD. METHODS: Fra2 transgenic mice were treated with MMF or nintedanib. Haematoxylin and Eosin and Sirius Red staining were used to identify pulmonary fibrosis and vascular remodelling in whole lung sections. Fibrosis was quantified by Ashcroft scoring, fold change in fibrotic area, and hydroxyproline. Ki67, SM22a, CD31, and caspase-3 staining was used to quantify proliferating vascular smooth muscle cells and apoptotic endothelial cells. RESULTS: Nintedanib effectively ameliorated pulmonary vascular remodelling and fibrosis in Fra2 transgenic mice. Pulmonary fibrotic and vascular remodelling parameter scores and the apoptosis of dermal endothelial cells were significantly reduced compared with vehicle-treated Fra2 transgenic mice. Treatment with MMF had only mild antifibrotic effects and no effect on pulmonary vascular remodelling. CONCLUSIONS: In this model of SSc-ILD, nintedanib ameliorated pulmonary fibrosis, remodelling of pulmonary vasculature, and the apoptosis of endothelial cells. In contrast, MMF had minor effects on pulmonary fibrosis and no effects on vascular manifestations.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Animales , Células Endoteliales , Humanos , Indoles , Pulmón , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/etiología , Ratones , Ratones Transgénicos , Ácido Micofenólico , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/tratamiento farmacológico , Capacidad Vital
9.
Drug Des Devel Ther ; 15: 997-1011, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33727792

RESUMEN

BACKGROUND: T cells are important regulators of inflammation and, via release of mediators, can contribute to pulmonary fibrosis. Nintedanib is approved for the treatment of idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease (ILD) and chronic fibrosing ILDs with a progressive phenotype. However, how nintedanib targets T cells has not been elucidated. MATERIALS AND METHODS: We investigated the immunomodulatory effects of nintedanib on T cells and peripheral blood mononuclear cells isolated from healthy donors. Cells were pre-incubated with different concentrations of nintedanib and then stimulated for 24 hours with anti-CD3 with or without anti-CD28 and with or without different cytokines. Levels of interferon gamma (IFN-γ), interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12p70 and IL-13 were quantitated. Western blotting with primary antibodies against phospho-Lck-Y394, phospho-Lck-Y505, Lck-total and Cofilin examined the phosphorylation level of the Lck protein. In vitro T-cell proliferation, T-cell clustering and different T-cell populations were also assessed. RESULTS: Nintedanib blocked T-cell activation through inhibiting Lck-Y394 phosphorylation. Pretreatment of T cells with nintedanib reduced cluster formation as a marker of activation and inhibited the release of IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12p70 and IL-13 at clinically relevant concentrations ranging from 5-77 nmol/L. Nintedanib did not alter T-cell proliferation or numbers of CD4+ and CD8+ T cells, but did increase stimulated Th17-like cells without increasing IL-17A levels. CONCLUSION: These immunomodulatory effects may further explain how nintedanib slows the progression of pulmonary fibrosis in various ILDs.


Asunto(s)
Factores Inmunológicos/farmacología , Indoles/farmacología , Linfocitos T/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/antagonistas & inhibidores , Citocinas/inmunología , Relación Dosis-Respuesta a Droga , Humanos , Relación Estructura-Actividad , Linfocitos T/inmunología
10.
Biomed Res Int ; 2020: 3867198, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32337244

RESUMEN

Systemic sclerosis can affect multiple internal organs, including the liver and lungs. Nintedanib, an antifibrotic approved for treatment of interstitial lung disease associated with systemic sclerosis, may have activity outside of the lungs. This study explored the effect of preventive and therapeutic nintedanib treatment in a 3-week carbon tetrachloride (CCL4)-induced (500 mg/kg/day twice weekly for 3 weeks) model of hepatic inflammation and fibrosis in C57Bl/6 mice (aged 8 weeks, n = 5 per group). Mice also received nintedanib (30 or 60 mg/kg/day) either each day for 21 days (preventive treatment) or from day 7 or day 14 (therapeutic treatment). Preventive nintedanib treatment at both doses significantly reduced CCL4-induced increases in myeloperoxidase (p < 0.01), hepatic collagen (p < 0.001), and interleukin (IL)-6 (p < 0.01) in the liver. Nintedanib also significantly reduced hepatic necrosis (p < 0.01 and p < 0.05), inflammation (p < 0.001 and p < 0.05), fibrosis (p < 0.001 and p < 0.05) and IL-1ß (p < 0.05 and p < 0.001) at both 30 and 60 mg/kg/day, respectively. Therapeutic treatment with nintedanib at 30 and 60 mg/kg/day significantly reduced CCL4-induced serum alanine aminotransferase from day 7 (p < 0.05 and p < 0.001) and day 14 (p < 0.01 and p < 0.05), respectively. Increases in tissue inhibitor of metalloproteinase-1 were significantly reduced by nintedanib at 60 mg/kg/day from day 7 only (p < 0.001), and nintedanib completely blocked elevation of IL-6 and IL-1ß levels regardless of dose or start of treatment (p < 0.05-p < 0.001). In both the preventive and therapeutic treatment schedules of the study, nintedanib treatment was beneficial in attenuating CCL4-induced pathology and reducing hepatic injury, inflammation, and fibrosis, demonstrating that nintedanib has antifibrotic and anti-inflammatory activity outside of the lungs.


Asunto(s)
Antiinflamatorios/farmacología , Tetracloruro de Carbono/toxicidad , Indoles/farmacología , Cirrosis Hepática/tratamiento farmacológico , Alanina Transaminasa/sangre , Animales , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Peroxidasa/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
11.
J Immunol ; 204(9): 2492-2502, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213567

RESUMEN

The chemokine CXCL13 controls the normal organization of secondary lymphoid tissues and the neogenesis of ectopic lymphoid structures in nonlymphoid organs, particularly the lungs. The progression and severity of idiopathic pulmonary fibrosis (IPF), a fatal and irreversible interstitial lung disease, is predicted by the circulating blood concentrations of CXCL13. Although CXCL13 is produced by pulmonary tissues, it has not been determined which cells are involved. This study examines CXCL13 production by lung tissue macrophages from patients with IPF and the signaling pathways controlling CXCL13 gene expression in human alveolar macrophages (AM) and monocyte-derived macrophages (MoDM). CXCL13 is found in CD68- and CD206-positive AM from patients with IPF, and the CXCL13 gene is induced in these macrophages and MoDM when they are stimulated with LPS. We found that TNF-α and IL-10 control optimal CXCL13 gene expression in MoDM and possibly in AM by activating the NF-κB and JAK/STAT pathways, respectively. We also found that blood TNF-α and CXCL13 concentrations are significantly correlated in patients with IPF, suggesting that TNF-α contributes to CXCL13 production in humans. In conclusion, the results of this study demonstrate that AM from patients with IPF produces CXCL13 and that the NF-κB and JAK/STAT pathways are required to induce the expression of this major chemokine.


Asunto(s)
Quimiocina CXCL13/metabolismo , Interleucina-10/metabolismo , Pulmón/metabolismo , Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Anciano , Femenino , Expresión Génica/fisiología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Quinasas Janus/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , FN-kappa B/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología
12.
Am J Physiol Renal Physiol ; 318(1): F117-F134, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31736352

RESUMEN

Poor translation from animal studies to human clinical trials is one of the main hurdles in the development of new drugs. Here, we used precision-cut kidney slices (PCKS) as a translational model to study renal fibrosis and to investigate whether inhibition of tyrosine kinase receptors, with the selective inhibitor nintedanib, can halt fibrosis in murine and human PCKS. We used renal tissue of murine and human origins to obtain PCKS. Control slices and slices treated with nintedanib were studied to assess viability, activation of tyrosine kinase receptors, cell proliferation, collagen type I accumulation, and gene and protein regulation. During culture, PCKS spontaneously develop a fibrotic response that resembles in vivo fibrogenesis. Nintedanib blocked culture-induced phosphorylation of platelet-derived growth factor receptor and vascular endothelial growth factor receptor. Furthermore, nintedanib inhibited cell proliferation and reduced collagen type I accumulation and expression of fibrosis-related genes in healthy murine and human PCKS. Modulation of extracellular matrix homeostasis was achieved already at 0.1 µM, whereas high concentrations (1 and 5 µM) elicited possible nonselective effects. In PCKS from human diseased renal tissue, nintedanib showed limited capacity to reverse established fibrosis. In conclusion, nintedanib attenuated the onset of fibrosis in both murine and human PCKS by inhibiting the phosphorylation of tyrosine kinase receptors; however, the reversal of established fibrosis was not achieved.


Asunto(s)
Fibrosis/tratamiento farmacológico , Indoles/farmacología , Enfermedades Renales/tratamiento farmacológico , Riñón/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Fibrosis/patología , Humanos , Indoles/uso terapéutico , Riñón/patología , Enfermedades Renales/patología , Ratones , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos
13.
Clin Exp Rheumatol ; 37 Suppl 119(4): 115-124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31573469

RESUMEN

OBJECTIVES: Nintedanib is approved for the treatment of idiopathic pulmonary fibrosis (IPF) and was demonstrated to slow disease progression in patients with IPF by reducing decline in forced vital capacity by 50%. Recently, nintedanib has been reported to exert anti-fibrotic activity on systemic sclerosis (scleroderma, SSc) skin fibroblasts and to diminish skin and lung fibrosis in mouse models. The goal of the present study was to determine the effects of nintedanib on a cellular model of SSc-associated interstitial lung disease (ILD). METHODS: Study was performed using lung fibroblasts (LF) isolated from five patients with SSc-ILD and from three control subjects. RESULTS: Nintedanib inhibited LF proliferation and migration in a concentration- and time-dependent manner. The proliferation rate of LF stimulated with PDGF in the presence of nintedanib was reduced 1.9-fold within 24 h as compared to cells stimulated with PDGF alone. Migration of SSc-ILD LF incubated with 100 nM nintedanib was reduced from 62.8±12.5% to 39.1±9.0% in the presence of PDGF and from 38.2±7.9% to 26.6±7.2% in serum-free medium. Nintedanib attenuated PDGF-induced Ca2+ efflux, reduced α-SMA promoter activity and α-SMA protein expression. Furthermore, nintedanib blocked PDGF-induced differentiation of normal LF to myofibroblasts, reduced production of collagen and fibronectin, and decreased contractility of SSc-ILD LF in both floating and fixed collagen gels. CONCLUSIONS: Our data demonstrate significant antifibrotic efficacy of nintedanib in SSc-ILD LF suggesting that nintedanib has the potential not only to prevent but also to reverse the increased activity of LF consequently attenuating excessive lung fibrosis observed in SSc-ILD.


Asunto(s)
Fibrosis Pulmonar Idiopática , Indoles/uso terapéutico , Enfermedades Pulmonares Intersticiales , Inhibidores de Proteínas Quinasas/uso terapéutico , Esclerodermia Sistémica , Células Cultivadas , Fibroblastos/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/etiología , Pulmón/citología , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/etiología , Esclerodermia Sistémica/complicaciones
14.
Eur Respir J ; 54(3)2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31285305

RESUMEN

A proportion of patients with fibrosing interstitial lung diseases (ILDs) develop a progressive phenotype characterised by decline in lung function, worsening quality of life and early mortality. Other than idiopathic pulmonary fibrosis (IPF), there are no approved drugs for fibrosing ILDs and a poor evidence base to support current treatments. Fibrosing ILDs with a progressive phenotype show commonalities in clinical behaviour and in the pathogenic mechanisms that drive disease worsening. Nintedanib is an intracellular inhibitor of tyrosine kinases that has been approved for treatment of IPF and has recently been shown to reduce the rate of lung function decline in patients with ILD associated with systemic sclerosis (SSc-ILD). In vitro data demonstrate that nintedanib inhibits several steps in the initiation and progression of lung fibrosis, including the release of pro-inflammatory and pro-fibrotic mediators, migration and differentiation of fibrocytes and fibroblasts, and deposition of extracellular matrix. Nintedanib also inhibits the proliferation of vascular cells. Studies in animal models with features of fibrosing ILDs such as IPF, SSc-ILD, rheumatoid arthritis-ILD, hypersensitivity pneumonitis and silicosis demonstrate that nintedanib has anti-fibrotic activity irrespective of the trigger for the lung pathology. This suggests that nintedanib inhibits fundamental processes in the pathogenesis of fibrosis. A trial of nintedanib in patients with progressive fibrosing ILDs other than IPF (INBUILD) will report results in 2019.


Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Indoles/uso terapéutico , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Pulmón/fisiopatología , Animales , Antiinflamatorios/farmacología , Bleomicina/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/complicaciones , Pulmón/efectos de los fármacos , Enfermedades Pulmonares Intersticiales/complicaciones , Ratones , Fenotipo , Inhibidores de Proteínas Quinasas/uso terapéutico , Fibrosis Pulmonar , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/tratamiento farmacológico
15.
Int Immunopharmacol ; 72: 112-123, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30974282

RESUMEN

The tyrosine kinase inhibitor, Nintedanib (NTD), has been approved for the treatment of idiopathic pulmonary fibrosis (IPF). In cell-free systems, NTD was recently shown to inhibit kinase activity of the human recombinant colony-stimulating factor 1 (CSF1) receptor (CSF1R) which mediates major functions of pulmonary macrophages. In the present study, we have investigated the effects of NTD on the phenotype of human monocyte-derived macrophages controlled by CSF1 in order to identify its anti-inflammatory properties via CSF1R inhibition. NTD (0.01 to 1 µM) prevented the CSF1-induced phosphorylation of CSF1R and activation of the downstream signaling pathways. NTD, like the CSF1R inhibitor GW2580, significantly decreased the adhesion of macrophages and production of the chemokine ligand (CCL) 2. NTD also altered the polarization of macrophages to classical M1 and alternative M2a macrophages. It reduced the secretion of several pro-inflammatory and/or pro-fibrotic cytokines (IL-1ß, IL-8, IL-10 and CXCL13) by M1 macrophages but did not prevent the expression of M1 markers. While NTD (50-200 nM) partially blocked the synthesis of M2a markers (CD11b, CD200R, CD206, and CD209), it did not reduce synthesis of the M2a pro-fibrotic cytokines CCL22 and PDGF-BB, and increased CCL18 release when used at its highest concentration (1 µM). The effects of NTD on macrophage polarization only was partially mimicked by GW2580, suggesting that the drug inhibits other molecules in addition to CSF1R. In conclusion, NTD alters the CSF1-controlled phenotype of human macrophages mainly by blocking the activation of CSF1R that thus constitutes a new molecular target of NTD, at least in vitro.


Asunto(s)
Indoles/farmacología , Macrófagos/efectos de los fármacos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Humanos , Fibrosis Pulmonar Idiopática , Macrófagos/metabolismo , Fenotipo
16.
Eur Respir Rev ; 28(151)2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-30814139

RESUMEN

Patients with certain types of fibrosing interstitial lung disease (ILD) are at risk of developing a progressive phenotype characterised by self-sustaining fibrosis, decline in lung function, worsening quality of life, and early mortality. It has been proposed that such progressive fibrosing ILDs, which show commonalities in clinical behaviour and in the pathogenetic mechanisms that drive progressive fibrosis, may be "lumped" together for the purposes of clinical research and, potentially, for treatment. At present, no drugs are approved for the treatment of ILDs other than nintedanib and pirfenidone for the treatment of idiopathic pulmonary fibrosis. For other progressive fibrosing ILDs, the mainstay of drug therapy is immunosuppression. However, it is postulated that, once the response to lung injury in fibrosing ILDs has reached the stage at which fibrosis has become progressive and self-sustaining, targeted antifibrotic therapy would be required to slow disease progression. Nintedanib, an intracellular inhibitor of tyrosine kinases, has shown antifibrotic, anti-inflammatory and vascular remodelling effects in several non-clinical models of fibrosis, irrespective of the trigger for the injury. Ongoing clinical trials will provide insight into the role of antifibrotic treatment with nintedanib or pirfenidone in the management of fibrosing ILDs with a progressive phenotype.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Pulmón , Fibrosis Pulmonar , Progresión de la Enfermedad , Estado de Salud , Humanos , Indoles/uso terapéutico , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/mortalidad , Enfermedades Pulmonares Intersticiales/patología , Enfermedades Pulmonares Intersticiales/fisiopatología , Fenotipo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/mortalidad , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/fisiopatología , Piridonas/uso terapéutico , Calidad de Vida , Fármacos del Sistema Respiratorio/uso terapéutico , Factores de Riesgo , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
17.
Cardiovasc Res ; 115(2): 432-439, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30032282

RESUMEN

Aims: Pulmonary arterial hypertension (PAH) is associated with increased levels of circulating growth factors and corresponding receptors such as platelet derived growth factor, fibroblast growth factor and vascular endothelial growth factor. Nintedanib, a tyrosine kinase inhibitor targeting primarily these receptors, is approved for the treatment of patients with idiopathic pulmonary fibrosis. Our objective was to examine the effect of nintedanib on proliferation of human pulmonary microvascular endothelial cells (MVEC) and assess its effects in rats with advanced experimental pulmonary hypertension (PH). Methods and results: Proliferation was assessed in control and PAH MVEC exposed to nintedanib. PH was induced in rats by subcutaneous injection of Sugen (SU5416) and subsequent exposure to 10% hypoxia for 4 weeks (SuHx model). Four weeks after re-exposure to normoxia, nintedanib was administered once daily for 3 weeks. Effects of the treatment were assessed with echocardiography, right heart catheterization, and histological analysis of the heart and lungs. Changes in extracellular matrix production was assessed in human cardiac fibroblasts stimulated with nintedanib. Decreased proliferation with nintedanib was observed in control MVEC, but not in PAH patient derived MVEC. Nintedanib treatment did not affect right ventricular (RV) systolic pressure or total pulmonary resistance index in SuHx rats and had no effects on pulmonary vascular remodelling. However, despite unaltered pressure overload, the right ventricle showed less dilatation and decreased fibrosis, hypertrophy, and collagen type III with nintedanib treatment. This could be explained by less fibronectin production by cardiac fibroblasts exposed to nintedanib. Conclusion: Nintedanib inhibits proliferation of pulmonary MVECs from controls, but not from PAH patients. While in rats with experimental PH nintedanib has no effects on the pulmonary vascular pathology, it has favourable effects on RV remodelling.


Asunto(s)
Indoles/farmacología , Miocardio/patología , Inhibidores de Proteínas Quinasas/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Arteria Pulmonar/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Función Ventricular Derecha/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Adulto , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Masculino , Miocardio/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Pirroles , Ratas Sprague-Dawley , Adulto Joven
18.
J Scleroderma Relat Disord ; 4(3): 212-218, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35382502

RESUMEN

Interstitial lung disease is a common manifestation of systemic sclerosis. Systemic sclerosis-associated interstitial lung disease is characterized by progressive pulmonary fibrosis and a reduction in pulmonary function. Effective treatments for systemic sclerosis-associated interstitial lung disease are lacking. In addition to clinical similarities, systemic sclerosis-associated interstitial lung disease shows similarities to idiopathic pulmonary fibrosis in the pathophysiology of the underlying fibrotic processes. Idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease culminate in a self-sustaining pathway of pulmonary fibrosis in which fibroblasts are activated, myofibroblasts accumulate, and the excessive extracellular matrix is deposited. Nintedanib is a tyrosine kinase inhibitor that has been approved for the treatment of idiopathic pulmonary fibrosis. In patients with idiopathic pulmonary fibrosis, nintedanib slows disease progression by decreasing the rate of lung function decline. In this review, we summarize the antifibrotic, anti-inflammatory, and attenuated vascular remodeling effects of nintedanib demonstrated in in vitro studies and in animal models of aspects of systemic sclerosis. Nintedanib interferes at multiple critical steps in the pathobiology of systemic sclerosis-associated interstitial lung disease, providing a convincing rationale for its investigation as a potential therapy. Finally, we summarize the design of the randomized placebo-controlled SENSCIS® trial that is evaluating the efficacy and safety of nintedanib in patients with systemic sclerosis-associated interstitial lung disease.

19.
Cell Death Dis ; 9(7): 776, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991677

RESUMEN

Duchenne muscle dystrophy (DMD) is a genetic disorder characterized by progressive skeletal muscle weakness. Dystrophin deficiency induces instability of the sarcolemma during muscle contraction that leads to muscle necrosis and replacement of muscle by fibro-adipose tissue. Several therapies have been developed to counteract the fibrotic process. We report the effects of nintedanib, a tyrosine kinase inhibitor, in the mdx murine model of DMD. Nintedanib reduced proliferation and migration of human fibroblasts in vitro and decreased the expression of fibrotic genes such as COL1A1, COL3A1, FN1, TGFB1, and PDGFA. We treated seven mdx mice with 60 mg/kg/day nintedanib for 1 month. Electrophysiological studies showed an increase in the amplitude of the motor action potentials and an improvement of the morphology of motor unit potentials in the animals treated. Histological studies demonstrated a significant reduction of the fibrotic areas present in the skeletal muscles. Analysis of mRNA expression from muscles of treated mice showed a reduction in Col1a1, Col3a1, Tgfb1, and Pdgfa. Western blot showed a reduction in the expression of collagen I in skeletal muscles. In conclusion, nintedanib reduced the fibrotic process in a murine model of dystrophinopathy after 1 month of treatment, suggesting its potential use as a therapeutic drug in DMD patients.


Asunto(s)
Fibrosis/tratamiento farmacológico , Indoles/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Potenciales de Acción/efectos de los fármacos , Animales , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/metabolismo , Modelos Animales de Enfermedad , Distrofina/metabolismo , Fibrosis/metabolismo , Masculino , Ratones , Contracción Muscular/efectos de los fármacos , Debilidad Muscular/tratamiento farmacológico , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 314(6): L998-L1009, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29543042

RESUMEN

Rheumatoid arthritis (RA)-associated interstitial lung disease (RA-ILD) develops in ~20% of patients with RA. SKG mice, which are genetically prone to development of autoimmune arthritis, develop a pulmonary interstitial pneumonia that resembles human cellular and fibrotic nonspecific interstitial pneumonia. Nintedanib, a tyrosine kinase inhibitor approved for treatment of idiopathic pulmonary fibrosis, has been shown to reduce the decline in lung function. Therefore, we investigated the effect of nintedanib on development of pulmonary fibrosis and joint disease in female SKG mice with arthritis induced by intraperitoneal injection of zymosan (5 mg). Nintedanib (60 mg·kg-1·day-1 via oral gavage) was started 5 or 10 wk after injection of zymosan. Arthritis and lung fibrosis outcome measures were assessed after 6 wk of treatment with nintedanib. A significant reduction in lung collagen levels, determined by measuring hydroxyproline levels and staining for collagen, was observed after 6 wk in nintedanib-treated mice with established arthritis and lung disease. Early intervention with nintedanib significantly reduced development of arthritis based on joint assessment and high-resolution µ-CT. This study impacts the RA and ILD fields by facilitating identification of a therapeutic treatment that may improve both diseases. As this model replicates the characteristics of RA-ILD, the results may be translatable to the human disease.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Colágeno/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Indoles/farmacología , Pulmón/metabolismo , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/diagnóstico por imagen , Artritis Experimental/metabolismo , Femenino , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/diagnóstico por imagen , Ratones , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...