Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 934: 172776, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697520

RESUMEN

The expansion of the world's merchant fleet poses a great threat to the ocean's biodiversity. Collisions between ships and marine megafauna can have population-level consequences for vulnerable species. The Endangered whale shark (Rhincodon typus) shares a circumglobal distribution with this expanding fleet and tracking of movement pathways has shown that large vessel collisions pose a major threat to the species. However, it is not yet known whether they are also at risk within aggregation sites, where up to 400 individuals can gather to feed on seasonal bursts of planktonic productivity. These "constellation" sites are of significant ecological, socio-economic and cultural value. Here, through expert elicitation, we gathered information from most known constellation sites for this species across the world (>50 constellations and >13,000 individual whale sharks). We defined the spatial boundaries of these sites and their overlap with shipping traffic. Sites were then ranked based on relative levels of potential collision danger posed to whale sharks in the area. Our results showed that researchers and resource managers may underestimate the threat posed by large ship collisions due to a lack of direct evidence, such as injuries or witness accounts, which are available for other, sub-lethal threat categories. We found that constellations in the Arabian Sea and adjacent waters, the Gulf of Mexico, the Gulf of California, and Southeast and East Asia, had the greatest level of collision threat. We also identified 39 sites where peaks in shipping activity coincided with peak seasonal occurrences of whale sharks, sometimes across several months. Simulated collision mitigation options estimated potentially minimal impact to industry, as most whale shark core habitat areas were small. Given the threat posed by vessel collisions, a coordinated, multi-national approach to mitigation is needed within priority whale shark habitats to ensure collision protection for the species.


Asunto(s)
Conservación de los Recursos Naturales , Tiburones , Navíos , Animales , Tiburones/fisiología , Especies en Peligro de Extinción , Monitoreo del Ambiente
3.
J Fish Biol ; 103(5): 864-883, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37395550

RESUMEN

The shortfin mako shark is a large-bodied pursuit predator thought to be capable of the highest swimming speeds of any elasmobranch and potentially one of the highest energetic demands of any marine fish. Nonetheless, few direct speed measurements have been reported for this species. Here, animal-borne bio-loggers attached to two mako sharks were used to provide direct measurements of swimming speeds, kinematics and thermal physiology. Mean sustained (cruising) speed was 0.90 m s-1 (±0.07 s.d.) with a mean tail-beat frequency (TBF) of 0.51 Hz (±0.16 s.d.). The maximum burst speed recorded was 5.02 m s-1 (TBFmax = 3.65 Hz) from a 2 m long female. Burst swimming was sustained for 14 s (mean speed = 2.38 m s-1 ), leading to a 0.24°C increase in white muscle temperature in the 12.5 min after the burst. Routine field metabolic rate was estimated at 185.2 mg O2 kg-1 h-1 (at 18°C ambient temperature). Gliding behaviour (zero TBF) was more frequently observed after periods of high activity, especially after capture when internal (white muscle) temperature approached 21°C (ambient temperature: 18.3°C), indicating gliding probably functions as an energy recovery mechanism and limits further metabolic heat production. The results show shortfin mako sharks generally cruise at speeds similar to other endothermic fish - but faster than ectothermic sharks - with the maximum recorded burst speed being among the highest so far directly measured among sharks, tunas and billfishes. This newly recorded high-oxygen-demand performance of mako sharks suggests it may be particularly vulnerable to habitat loss due to climate-driven ocean deoxygenation.


Asunto(s)
Tiburones , Femenino , Animales , Tiburones/fisiología , Natación/fisiología , Músculos , Temperatura , Atún
4.
J Fish Biol ; 101(5): 1160-1181, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36073958

RESUMEN

Groups of basking sharks engaged in circling behaviour are rarely observed, and their function remains enigmatic in the absence of detailed observations. Here, underwater and aerial video recordings of multiple circling groups of basking sharks during late summer (August and September 2016-2021) in the eastern North Atlantic Ocean showed groups numbering between 6 and 23 non-feeding individuals of both sexes. Sharks swam slowly in a rotating "torus" (diameter range: 17-39 m), with individuals layered vertically from the surface to a maximum depth of 16 m. Within a torus, sharks engaged in close-following, echelon, close-flank approach or parallel-swimming behaviours. Measured shark total body lengths were 5.4-9.5 m (mean LT : 7.3 m ± 0.9 s.d.; median: 7.2 m, n = 27), overlapping known lengths of sexually mature males and females. Males possessed large claspers with abrasions that were also observed on female pectoral fins. Female body colouration was paler than that of males, similar to colour changes observed during courtship and mating in other shark species. Individuals associated with most other members rapidly (within minutes), indicating toroidal behaviours facilitate multiple interactions. Sharks interacted through fin-fin and fin-body contacts, rolling to expose the ventral surfaces to following sharks, and breaching behaviour. Toruses formed in late summer when feeding aggregations in zooplankton-rich thermal fronts switched to non-feeding following and circling behaviours. Collectively, the observations explain a courtship function for toruses. This study highlights northeast Atlantic coastal waters as a critical habitat supporting courtship reproductive behaviour of endangered basking sharks, the first such habitat identified for this species globally.


Asunto(s)
Cortejo , Tiburones , Masculino , Femenino , Animales , Océano Atlántico , Ecosistema , Estaciones del Año
5.
Proc Natl Acad Sci U S A ; 119(20): e2117440119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533277

RESUMEN

Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks' horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial "cryptic" lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.


Asunto(s)
Tiburones , Animales , Especies en Peligro de Extinción , Plancton , Navíos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...