Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15642, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977865

RESUMEN

Oxidative stress plays an essential role in the progression of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Streptozotocin (STZ)-induced abnormal brain insulin signaling and oxidative stress play crucial roles in the progression of Alzheimer's disease (AD)-like pathology. Peroxiredoxins (Prxs) are associated with protection from neuronal death induced by oxidative stress. However, the molecular mechanisms underlying Prxs on STZ-induced progression of AD in the hippocampal neurons are not yet fully understood. Here, we evaluated whether Peroxiredoxin 1 (Prx1) affects STZ-induced AD-like pathology and cellular toxicity. Prx1 expression was increased by STZ treatment in the hippocampus cell line, HT-22 cells. We evaluated whether Prx1 affects STZ-induced HT-22 cells using overexpression. Prx1 successfully protected the forms of STZ-induced AD-like pathology, such as neuronal apoptosis, synaptic loss, and tau phosphorylation. Moreover, Prx1 suppressed the STZ-induced increase of mitochondrial dysfunction and fragmentation by down-regulating Drp1 phosphorylation and mitochondrial location. Prx1 plays a role in an upstream signal pathway of Drp1 phosphorylation, cyclin-dependent kinase 5 (Cdk5) by inhibiting the STZ-induced conversion of p35 to p25. We found that STZ-induced of intracellular Ca2+ accumulation was an important modulator of AD-like pathology progression by regulating Ca2+-mediated Calpain activation, and Prx1 down-regulated STZ-induced intracellular Ca2+ accumulation and Ca2+-mediated Calpain activation. Finally, we identified that Prx1 antioxidant capacity affected Ca2+/Calpain/Cdk5-mediated AD-like pathology progress. Therefore, these findings demonstrated that Prx1 is a key factor in STZ-induced hippocampal neuronal death through inhibition of Ca2+/Calpain/Cdk5-mediated mitochondrial dysfunction by protecting against oxidative stress.


Asunto(s)
Enfermedad de Alzheimer , Calcio , Calpaína , Quinasa 5 Dependiente de la Ciclina , Hipocampo , Mitocondrias , Neuronas , Peroxirredoxinas , Estreptozocina , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/etiología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Estreptozocina/toxicidad , Hipocampo/metabolismo , Hipocampo/patología , Neuronas/metabolismo , Neuronas/patología , Calpaína/metabolismo , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Mitocondrias/metabolismo , Ratones , Calcio/metabolismo , Línea Celular , Estrés Oxidativo , Apoptosis , Dinaminas/metabolismo , Dinaminas/genética , Fosforilación , Proteínas tau/metabolismo , Transducción de Señal
2.
Appl Radiat Isot ; 211: 111404, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38917619

RESUMEN

This study aimed to determine the optimal injection dose for non-human primate positron emission tomography (PET). We first used a monkey brain phantom with a volume of 80,000 mm3 containing 250 MBq of [18F]FDG. Next, we compared the radioactivity difference between the PET images and the actual radioactivity from the dose calibrator to determine the low-error range. We then evaluated the image quality using the NEMA-NU phantom. Finally, [18F]FP-CIT PET images were obtained from two monkeys with middle and high doses. As a result, PET images with a middle injected dose generated reasonable image quality and showed a high signal-to-noise ratio in monkey brain PET with [18F]FP-CIT. These results are expected to be actively applied in PET research using non-human primates.

3.
Neuron ; 112(13): 2218-2230.e6, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38663401

RESUMEN

Maladaptive feeding behavior is the primary cause of modern obesity. While the causal influence of the lateral hypothalamic area (LHA) on eating behavior has been established in rodents, there is currently no primate-based evidence available on naturalistic eating behaviors. We investigated the role of LHA GABAergic (LHAGABA) neurons in eating using chemogenetics in three macaques. LHAGABA neuron activation significantly increased naturalistic goal-directed behaviors and food motivation, predominantly for palatable food. Positron emission tomography and magnetic resonance spectroscopy validated chemogenetic activation. Resting-state functional magnetic resonance imaging revealed that the functional connectivity (FC) between the LHA and frontal areas was increased, while the FC between the frontal cortices was decreased after LHAGABA neuron activation. Thus, our study elucidates the role of LHAGABA neurons in eating and obesity therapeutics for primates and humans.


Asunto(s)
Conducta Alimentaria , Objetivos , Imagen por Resonancia Magnética , Animales , Conducta Alimentaria/fisiología , Masculino , Área Hipotalámica Lateral/fisiología , Neuronas GABAérgicas/fisiología , Tomografía de Emisión de Positrones , Macaca mulatta , Hipotálamo/fisiología , Hipotálamo/diagnóstico por imagen , Neuronas/fisiología , Femenino
4.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688719

RESUMEN

Glutamatergic mossy cells (MCs) mediate associational and commissural connectivity, exhibiting significant heterogeneity along the septotemporal axis of the mouse dentate gyrus (DG). However, it remains unclear whether the neuronal features of MCs are conserved across mammals. This study compares the neuroanatomy of MCs in the DG of mice and monkeys. The MC marker, calretinin, distinguishes two subpopulations: septal and temporal. Dual-colored fluorescence labeling is utilized to compare the axonal projection patterns of these subpopulations. In both mice and monkeys, septal and temporal MCs project axons across the longitudinal axis of the ipsilateral DG, indicating conserved associational projections. However, unlike in mice, no MC subpopulations in monkeys make commissural projections to the contralateral DG. In monkeys, temporal MCs send associational fibers exclusively to the inner molecular layer, while septal MCs give rise to wide axonal projections spanning multiple molecular layers, akin to equivalent MC subpopulations in mice. Despite conserved septotemporal heterogeneity, interspecies differences are observed in the topological organization of septal MCs, particularly in the relative axonal density in each molecular layer along the septotemporal axis of the DG. In summary, this comparative analysis sheds light on both conserved and divergent features of MCs in the DG of mice and monkeys. These findings have implications for understanding functional differentiation along the septotemporal axis of the DG and contribute to our knowledge of the anatomical evolution of the DG circuit in mammals.


Asunto(s)
Axones , Calbindina 2 , Giro Dentado , Ratones Endogámicos C57BL , Animales , Masculino , Giro Dentado/citología , Giro Dentado/anatomía & histología , Calbindina 2/metabolismo , Fibras Musgosas del Hipocampo/fisiología , Ratones , Especificidad de la Especie , Femenino
5.
Front Public Health ; 12: 1326457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481836

RESUMEN

Objectives: Injury prevention can be achieved through various interventions, but it faces challenges due to its comprehensive nature and susceptibility to external environmental factors, making it difficult to detect risk signals. Moreover, the reliance on standardized systems leads to the construction and statistical analysis of numerous injury surveillance data, resulting in significant temporal delays before being utilized in policy formulation. This study was conducted to quickly identify substantive injury risk problems by employing text mining analysis on national emergency response data, which have been underutilized so far. Methods: With emerging issue and topic analyses, commonly used in science and technology, we detected problematic situations and signs by deriving injury keywords and analyzing time-series changes. Results: In total, 65 injury keywords were identified, categorized into hazardous, noteworthy, and diffusion accidents. Semantic network analysis on hazardous accident terms refined the injury risk issues. Conclusion: An increased risk of winter epidemic fractures due to extreme weather, self-harm due to depression (especially drug overdose and self-mutilation), and falls was observed in older adults. Thus, establishing effective injury prevention strategies through inter-ministerial and interagency cooperation is necessary.


Asunto(s)
Minería de Datos , Estaciones del Año , Factores de Tiempo
6.
Brain Res ; 1820: 148588, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37742938

RESUMEN

The role of death-associated protein kinase1 (DAPK1) in post-stroke functional recovery is controversial, as is its mechanism of action and any neural remodeling effect after ischemia. To assess the debatable role of DAPK1, we established the middle cerebral artery occlusion (MCAo) model in DAPK1 knockout mice and Sprague-Dawley (SD) rats. We identified that the genetic deletion of the DAPK1 as well as pharmacological inhibition of DAPK1 showed reduced brain infarct volume and neurological deficit. We report that DAPK1 inhibition (DI) reduces post-stroke neuronal death by inhibiting BAX/BCL2 and LC3/Beclin1 mediated apoptosis and autophagy, respectively. Histological analysis displayed a reduction in nuclear condensation, neuronal dissociation, and degraded cytoplasm in the DI group. The DI treatment showed enhanced dendrite spine density and neurite outgrowth, upregulated neural proliferation marker proteins like brain-derived neurotrophic factor, and reduced structural abnormalities of the cortical pyramidal neurons. This research shows that DAPK1 drives cell death, its activation exacerbates functional recovery after cerebral ischemia and shows that oxazolone-based DI could be an excellent candidate for stroke and ischemic injury intervention.

7.
Commun Biol ; 6(1): 879, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640792

RESUMEN

Characterizing the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the molecular level is necessary to understand viral pathogenesis and identify clinically relevant biomarkers. However, in humans, the pulmonary host response during disease onset remains poorly understood. Herein, we utilized a spatial transcriptome atlas to identify pulmonary microstructure-specific COVID-19 gene signatures during the acute phase of lung infection in cynomolgus macaques. The innate immune response to virus-induced cell death was primarily active in the alveolar regions involving activated macrophage infiltration. Inflamed vascular regions exhibited prominent upregulation of interferon and complement pathway genes that mediate antiviral activity and tissue damage response. Furthermore, known biomarker genes were significantly expressed in specific microstructures, and some of them were universally expressed across all microstructures. These findings underscore the importance of identifying key drivers of disease progression and clinically applicable biomarkers by focusing on pulmonary microstructures appearing during SARS-CoV-2 infection.


Asunto(s)
Ascomicetos , COVID-19 , Humanos , Animales , COVID-19/genética , SARS-CoV-2 , Transcriptoma , Macaca fascicularis , Pulmón
8.
Lab Anim Res ; 39(1): 11, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264475

RESUMEN

Preclinical ischemic stroke studies extensively utilize the intraluminal suture method of middle cerebral artery occlusion (MCAo). General anesthesia administration is an essential step for MCAo, but anesthetic agents can lead to adverse effects causing death and making a considerable impact on inducing cerebral ischemia. The purpose of this study was to comparatively assess the effect of isoflurane and xylazine on transient cerebral ischemia in a mouse model of MCAo. Twenty animals were randomly divided into four groups: sham group (no MCAo), control group (MCAo under isoflurane, no agent till reperfusion), isoflurane group (MCAo under isoflurane continued till reperfusion), xylazine group (MCAo under isoflurane, and administration of xylazine till reperfusion). The survival rate, brain infarct volume, and neurologic deficits were studied to assess the effect of isoflurane and xylazine on the stroke model. Our results showed that the body weight showed statistically significant change before and 24 h after surgery in the control and Isoflurane groups, but no difference in the Xylazine group. Also, the survival rate, brain infarct volume, and neurologic deficits were slightly reduced in the isoflurane group at 24 h after reperfusion injury. However, the xylazine and control groups showed similar BIV and neurologic deficits. Interestingly, a high survival rate was observed in the xylazine group. Our results indicate that the modified method of inhalation anesthetics combined with xylazine can reduce the risk of mortality and develop a reproducible MCAo model with predictable brain ischemia. In addition, extended isoflurane anesthesia after MCAo is associated with the risk of mortality.

9.
Artículo en Inglés | MEDLINE | ID: mdl-36498144

RESUMEN

Coronavirus disease 2019 (COVID-19) led to the loss of lives and had serious social and economic effects. Countries implemented various quarantine policies to reduce the effects. The countries were divided into low- and high-risk groups based on the differences in quarantine policies and their levels of infection. Quarantine policies that significantly contributed to risk reduction were determined by analyzing 11 quarantine indicators for reducing the spread of COVID-19. The cross-tabulation and Chi-square tests were used to compare the quarantine policies by the groups. Multivariate logistic regression was used to determine the useful quarantine policies implemented by the low-risk group to verify quarantine policies for minimizing the negative effects. The analysis showed that the low- and medium-risk groups showed significant differences for 9 of the 11 indicators, and 4 of these differentiated the low- from the medium-risk group. Countries with strict quarantine policies related to workplace closure and staying at home were more likely to be included in the low-risk group. These policies had a significant impact in the low-risk countries and could contribute to reducing the spread and effects of COVID-19 in countries included in the high-risk group.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Cuarentena , Gobierno
10.
Parkinsons Dis ; 2022: 4382145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407681

RESUMEN

The hemiparkinsonian nonhuman primate model induced by unilateral injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the carotid artery is used to study Parkinson's disease. However, there have been no studies that the contralateral distribution of MPTP via the cerebral collateral circulation is provided by both the circle of Willis (CoW) and connections of the carotid artery. To investigate whether MPTP-induced unilaterally damaged regions were determined by asymmetrical cerebral blood flow, the differential asymmetric damage of striatal subregions, and examined structural asymmetries in a circle of Willis, and blood flow velocity of the common carotid artery were observed in three monkeys that were infused with MPTP through the left internal carotid artery. Lower flow velocity in the ipsilateral common carotid artery and a higher ratio of ipsilateral middle cerebral artery diameter to anterior cerebral artery diameter resulted in unilateral damage. Additionally, the unilateral damaged monkey observed the apomorphine-induced contralateral rotation behavior and the temporary increase of plasma RANTES. Contrastively, higher flow velocity in the ipsilateral common carotid artery was observed in the bilateral damaged monkey. It is suggested that asymmetry of blood flow velocity and structural asymmetry of the circle of Willis should be taken into consideration when establishing more efficient hemiparkinsonian nonhuman primate models.

11.
Exp Neurobiol ; 31(6): 409-418, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36631849

RESUMEN

Till date, researchers have been developing animal models of Alzheimer's disease (AD) in various species to understand the pathological characterization and molecular mechanistic pathways associated with this condition in humans to identify potential therapeutic treatments. A widely recognized AD model that mimics the pathology of human AD involves the intracerebroventricular (ICV) injection with streptozotocin (STZ). However, ICV injection as an invasive approach has several limitations related to complicated surgical procedures. Therefore, in the present study, we created a customized stereotaxic frame using the XperCT-guided system for injecting STZ in cynomolgus monkeys, aiming to establish an AD model. The anatomical structures surrounding the cisterna magna (CM) were confirmed using CT/MRI fusion images of monkey brain with XperCT, the c-arm cone beam computed tomography. XperCT was used to determine the appropriate direction in which the needle tip should be inserted within the CM region. Cerebrospinal fluid (CSF) was collected to confirm the accurate target site when STZ was injected into the CM. Cynomolgus monkeys were administered STZ dissolved in artificial CSF once every week for 4 weeks via intracisterna magna (ICM) injection using XperCT-guided stereotactic system. The molecular mechanisms underlying the progression of STZ-induced AD pathology were analyzed two weeks after the final injection. The monkeys subjected to XperCT-based STZ injection via the ICM route showed features of AD pathology, including markedly enhanced neuronal loss, synaptic impairment, and tau phosphorylation in the hippocampus. These findings suggest a new approach for the construction of neurodegenerative disease models and development of therapeutic strategies.

12.
J Am Heart Assoc ; 10(15): e021824, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34275325

RESUMEN

Background In tandem stenoses, nonhyperemic pressure ratio pullback is the preferred method to fractional flow reserve (FFR), based on the assumption of stable resting coronary flow. This study aimed to evaluate temporal changes of coronary circulatory indexes in tandem stenoses before and after angioplasty for proximal stenosis. Methods and Results Coronary tandem stenoses were created by porcine restenosis model with 2 bare metal stents in the left anterior descending artery. Four weeks later, changes in distal coronary pressure (Pd), averaged peak velocity, microvascular resistance, transstenotic pressure gradient across distal stenosis, resting Pd/aortic pressure, and FFR were measured before and 1, 5, 10, 15, and 20 minutes after balloon angioplasty for proximal stenosis. After angioplasty, there were significant changes in both resting and hyperemic Pd, averaged peak velocity, microvascular resistance, and transstenotic pressure gradient across distal stenosis (all P values <0.01). After initial acute changes, hyperemic averaged peak velocity and microvascular resistance did not show significant difference from the baseline values (P=0.712 and 0.972, respectively). Conversely, resting averaged peak velocity remained increased (10.1±0.7 to 17.8±0.7; P<0.001) and resting microvascular resistance decreased (6.0±0.1 to 2.2±0.7; P<0.001). Transstenotic pressure gradient across distal stenosis was significantly increased in both resting (13.1±7.6 to 25.3±4.2; P=0.040) and hyperemic conditions (11.0±3.0 to 27.4±3.3 mm Hg; P<0.001). Actual post-percutaneous coronary intervention Pd/aortic pressure and FFR were significantly lower than predicted values (Pd/aortic pressure, 0.68±0.22 versus 0.85±0.14; P<0.001; FFR, 0.63±0.08 versus 0.81±0.08; P<0.001). Conclusions After angioplasty for proximal stenosis, transstenotic pressure gradient across distal stenosis showed similar changes between resting and hyperemic conditions. Both actual post-percutaneous coronary intervention resting Pd/aortic pressure and FFR were significantly lower than predicted values.


Asunto(s)
Angioplastia Coronaria con Balón , Estenosis Coronaria , Vasos Coronarios , Angioplastia Coronaria con Balón/efectos adversos , Angioplastia Coronaria con Balón/métodos , Animales , Angiografía Coronaria/métodos , Reestenosis Coronaria/diagnóstico , Reestenosis Coronaria/etiología , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/patología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Reserva del Flujo Fraccional Miocárdico , Microcirculación , Cuidados Posoperatorios/métodos , Cuidados Preoperatorios/métodos , Porcinos , Resistencia Vascular
13.
Exp Neurobiol ; 29(5): 376-388, 2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33154199

RESUMEN

Symptoms of Parkinson's disease (PD) caused by loss of dopaminergic neurons are accompanied by movement disorders, including tremors, rigidity, bradykinesia, and akinesia. Non-human primate (NHP) models with PD play an essential role in the analysis of PD pathophysiology and behavior symptoms. As impairments of hand dexterity function can affect activities of daily living in patients with PD, research on hand dexterity function in NHP models with chronic PD is essential. Traditional rating scales previously used in the evaluation of animal spontaneous behavior were insufficient due to factors related to subjectivity and passivity. Thus, experimentally designed applications for an appropriate apparatus are necessary. In this study, we aimed to longitudinally assess hand dexterity function using hand dexterity task (HDT) in NHP-PD models. To validate this assessment, we analyzed the alteration in Parkinsonian tremor signs and the functionality of presynaptic dopaminergic neuron using positron emission tomography imaging of dopamine transporters in these models. In addition, a significant inverse correlation between HDT and DAT level was identified, but no local bias was found. The correlation with intention tremor signs was lower than the resting tremor. In conclusion, the evaluation of HDT may reflect behavioral symptoms of NHP-PD models. Furthermore, HDT was effectively used to experimentally distinguish intention tremors from other tremors.

14.
Exp Neurobiol ; 29(4): 300-313, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32921642

RESUMEN

Ischemic stroke results from arterial occlusion and can cause irreversible brain injury. A non-human primate (NHP) model of ischemic stroke was previously developed to investigate its pathophysiology and for efficacy testing of therapeutic candidates; however, fine motor impairment remains to be well-characterized. We evaluated hand motor function in a cynomolgus monkey model of ischemic stroke. Endovascular transient middle cerebral artery occlusion (MCAO) with an angiographic microcatheter induced cerebral infarction. In vivo magnetic resonance imaging mapped and measured the ischemia-induced infarct lesion. In vivo diffusion tensor imaging (DTI) of the stroke lesion to assess the neuroplastic changes and fiber tractography demonstrated three-dimensional patterns in the corticospinal tract 12 weeks after MCAO. The hand dexterity task (HDT) was used to evaluate fine motor movement of upper extremity digits. The HDT was modified for a home cage-based training system, instead of conventional chair restraint training. The lesion was localized in the middle cerebral artery territory, including the sensorimotor cortex. Maximum infarct volume was exhibited over the first week after MCAO, which progressively inhibited ischemic core expansion, manifested by enhanced functional recovery of the affected hand over 12 weeks after MCAO. The total performance time decreased with increasing success rate for both hands on the HDT. Compensatory strategies and retrieval failure improved in the chronic phase after stroke. Our findings demonstrate the recovery of fine motor skill after stroke, and outline the behavioral characteristics and features of functional disorder of NHP stroke model, providing a basis for assessing hand motor function after stroke.

15.
Front Cell Neurosci ; 14: 235, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903692

RESUMEN

Aberrant brain insulin signaling plays a critical role in the pathology of Alzheimer's disease (AD). Mitochondrial dysfunction plays a role in the progression of AD, with excessive mitochondrial fission in the hippocampus being one of the pathological mechanisms of AD. However, the molecular mechanisms underlying the progression of AD and mitochondrial fragmentation induced by aberrant brain insulin signaling in the hippocampal neurons are poorly understood. Therefore, we investigated the molecular mechanistic signaling associated with mitochondrial dynamics using streptozotocin (STZ), a diabetogenic compound, in the hippocampus cell line, HT-22 cells. In this metabolic dysfunctional cellular model, hallmarks of AD such as neuronal apoptosis, synaptic loss, and tau hyper-phosphorylation are induced by STZ. We found that in the mitochondrial fission protein Drp1, phosphorylation is increased in STZ-treated HT-22 cells. We also determined that inhibition of mitochondrial fragmentation suppresses STZ-induced AD-like pathology. Furthermore, we found that phosphorylation of Drp1 was induced by CDK5, and inhibition of CDK5 suppresses STZ-induced mitochondrial fragmentation and AD-like pathology. Therefore, these findings indicate that mitochondrial morphology and functional regulation may be a strategy of potential therapeutic for treating abnormal metabolic functions associated with the pathogenesis of AD.

16.
Lab Anim Res ; 36: 17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32551298

RESUMEN

To date, researchers have developed various animal models of Alzheimer's disease (AD) to investigate its mechanisms and to identify potential therapeutic treatments. A widely recognized model that mimics the pathology of human sporadic AD involves intracerebroventricular (ICV) injection with streptozotocin (STZ). However, ICV injections are an invasive approach, which creates limitations in generalizing the results. In this study, we produced a rodent model of AD using STZ (3 mg/kg) injection via the cisterna magna (CM) once every week for 4 weeks, and analyzed at 4 weeks and 16 weeks after final injection. In the CM-STZ rodent model of AD, we observed increase in extracellular amyloid-beta (Aß) deposition and decrease and abnormal morphology of post-synaptic protein, PSD95 in 16 weeks STZ-injected group. The model developed using our less-invasive method induced features of AD-like pathology, including significantly increased extracellular amyloid-beta deposition, and decreased synaptic protein in the hippocampus. These findings supporting the success of this alternative approach, and thus, we suggest this is a promising, less invasive model for use in future AD research.

17.
Neuroscience ; 431: 73-85, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32036014

RESUMEN

Study of interactions between the nervous system and immunity offers insights into the pathogenesis of Parkinson's disease (PD) and potential therapeutic strategies for neurodegenerative diseases. Studies on rodents have revealed regulatory mechanisms of microglial activation and T lymphocyte recruitment in PD. However, the mechanisms underlying chronic T lymphocyte infiltration into the brain after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection into a non-human primate (NHP) model of PD remain unknown. This study aimed to investigate changes in serum RANTES (regulated on activation, normal T cell expression and secretion) and analyze the chronic infiltration of T lymphocytes into the brain and microglia activation in NHPs at 48 weeks post-MPTP administration. We found selective and local chronic infiltration of CD4+ and CD8+ T lymphocytes, loss of dopaminergic neurons, dopamine transporter expression, chronic normalization of RANTES in the peripheral blood, and altered microglial morphology at 48 weeks after MPTP injection. This study confirms the involvement of CD4+ and CD8+ T lymphocyte infiltration in MPTP-induced NHP models of PD. Additionally, we corroborated previous findings regarding the mechanisms of T lymphocyte-induced neurodegeneration. The findings of chronic infiltration of T lymphocytes in our NHP model of PD provide novel insights into PD pathogenesis and the development of preventive and therapeutic agents.


Asunto(s)
Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Encéfalo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Ratones , Ratones Endogámicos C57BL , Primates
18.
Exp Anim ; 69(1): 62-69, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31484848

RESUMEN

Pigs are often selected for large animal models including for neuroscience and behavioral research, because their anatomy and biochemistry are similar to those of humans. However, behavioral assessments, in combination with objective long-term monitoring, is difficult. In this study, we introduced an automated video tracking system which was previously used in rodent studies, for use with pig models. Locomotor behaviors (total distance, number of zone transitions, and velocity) were evaluated and their changes were validated by different 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration methods and dosing regimens. Three minipigs (23-29 kg) received subcutaneous or intravenous MPTP, either 1 or 3 times per week. Immediately after MPTP injection, the minipigs remained in a corner and exhibited reduced trajectory. In addition, the total distance travelled, number of zone transitions, and velocity were greatly reduced at every MPTP administration in all the minipigs, accompanying to increased resting time. However, the MPTP-induced symptoms were reversed when MPTP administration was terminated. In conclusion, this automated video-tracking system was able to monitor long-term locomotor activity and differentiate detailed alterations in large animals. It has the advantages of being easy to use, higher resolution, less effort, and more delicate tracking. Additionally, as our method can be applied to the animals' home pen, no habituation is needed.


Asunto(s)
Crianza de Animales Domésticos/métodos , Locomoción , Porcinos Enanos/fisiología , Grabación en Video/métodos , Animales , Masculino , Proyectos Piloto , Sensibilidad y Especificidad , Porcinos
19.
J Clin Med ; 8(11)2019 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-31684092

RESUMEN

Physical exercise has long been recommended as a treatment for osteoarthritis (OA), though its effects vary based on the exercise protocol. Here, we examined whether environmental lighting conditions influence the anti-inflammatory benefits of exercise in a rat model of OA. Moderate-intensity treadmill exercise (Ex) was performed for six weeks under a 12:12 h light/dark (L/D) cycle, and compared against rats housed in a 24 h continuous light (L/L) environment. L/L conditions were associated with serological changes shortly after OA induction, which exacerbated the inflammatory microenvironment in the joint. Differentiation capacity was also impaired in bone precursor cells isolated from normal rats maintained under L/L conditions, despite elevated inflammatory responses. Exercise training under L/L conditions led to increased corticosterone levels in the blood, which exacerbated the progression of cartilaginous and synovial lesions. Osteoporotic phenomena were also observed in exercise-trained rats maintained under L/L conditions, along with inflammation-induced catabolism in the gastrocnemius muscle. Aberrant light/dark cycle conditions were also found to be associated with suppression of splenic Cry1 expression in exercise-trained rats, leading to dysregulation of immune responses. Taken together, these data suggest that lighting condition may be an important environmental factor influencing the exercise-induced benefits on OA.

20.
Exp Neurobiol ; 28(4): 458-473, 2019 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31495075

RESUMEN

The function of microglia/macrophages after ischemic stroke is poorly understood. This study examines the role of microglia/macrophages in the focal infarct area after transient middle cerebral artery occlusion (MCAO) in rhesus monkeys. We measured infarct volume and neurological function by magnetic resonance imaging (MRI) and non-human primate stroke scale (NHPSS), respectively, to assess temporal changes following MCAO. Activated phagocytic microglia/macrophages were examined by immunohistochemistry in post-mortem brains (n=6 MCAO, n=2 controls) at 3 and 24 hours (acute stage), 2 and 4 weeks (subacute stage), and 4, and 20 months (chronic stage) following MCAO. We found that the infarct volume progressively decreased between 1 and 4 weeks following MCAO, in parallel with the neurological recovery. Greater presence of cluster of differentiation 68 (CD68)-expressing microglia/macrophages was detected in the infarct lesion in the subacute and chronic stage, compared to the acute stage. Surprisingly, 98~99% of transforming growth factor beta (TGFß) was found co-localized with CD68-expressing cells. CD68-expressing microglia/macrophages, rather than CD206+ cells, may exert anti-inflammatory effects by secreting TGFß after the subacute stage of ischemic stroke. CD68+ microglia/macrophages can therefore be used as a potential therapeutic target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...