Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(730): eadf1691, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38232139

RESUMEN

Glycogen synthase 1 (GYS1), the rate-limiting enzyme in muscle glycogen synthesis, plays a central role in energy homeostasis and has been proposed as a therapeutic target in multiple glycogen storage diseases. Despite decades of investigation, there are no known potent, selective small-molecule inhibitors of this enzyme. Here, we report the preclinical characterization of MZ-101, a small molecule that potently inhibits GYS1 in vitro and in vivo without inhibiting GYS2, a related isoform essential for synthesizing liver glycogen. Chronic treatment with MZ-101 depleted muscle glycogen and was well tolerated in mice. Pompe disease, a glycogen storage disease caused by mutations in acid α glucosidase (GAA), results in pathological accumulation of glycogen and consequent autophagolysosomal abnormalities, metabolic dysregulation, and muscle atrophy. Enzyme replacement therapy (ERT) with recombinant GAA is the only approved treatment for Pompe disease, but it requires frequent infusions, and efficacy is limited by suboptimal skeletal muscle distribution. In a mouse model of Pompe disease, chronic oral administration of MZ-101 alone reduced glycogen buildup in skeletal muscle with comparable efficacy to ERT. In addition, treatment with MZ-101 in combination with ERT had an additive effect and could normalize muscle glycogen concentrations. Biochemical, metabolomic, and transcriptomic analyses of muscle tissue demonstrated that lowering of glycogen concentrations with MZ-101, alone or in combination with ERT, corrected the cellular pathology in this mouse model. These data suggest that substrate reduction therapy with GYS1 inhibition may be a promising therapeutic approach for Pompe disease and other glycogen storage diseases.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Ratones , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa/farmacología , Ratones Noqueados , Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Terapia de Reemplazo Enzimático/métodos
2.
J Med Chem ; 66(1): 149-169, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36533617

RESUMEN

Hyperactivation of mTOR kinase by mutations in the PI3K/mTOR pathway or by crosstalk with other mutant cancer drivers, such as RAS, is a feature of many tumors. Multiple allosteric inhibitors of mTORC1 and orthosteric dual inhibitors of mTORC1 and mTORC2 have been developed as anticancer drugs, but their clinical utility has been limited. To address these limitations, we have developed a novel class of "bi-steric inhibitors" that interact with both the orthosteric and the allosteric binding sites in order to deepen the inhibition of mTORC1 while also preserving selectivity for mTORC1 over mTORC2. In this report, we describe the discovery and preclinical profile of the development candidate RMC-5552 and the in vivo preclinical tool compound RMC-6272. We also present evidence that selective inhibition of mTORC1 in combination with covalent inhibition of KRASG12C shows increased antitumor activity in a preclinical model of KRASG12C mutant NSCLC that exhibits resistance to KRASG12C inhibitor monotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proliferación Celular , Serina-Treonina Quinasas TOR , Diana Mecanicista del Complejo 2 de la Rapamicina , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Línea Celular Tumoral
3.
J Sulphur Chem ; 34(1-2): 33-37, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-28966658

RESUMEN

A short synthetic route to ß,d-arabinofuranosyl 1-C-sulfonic acid (7), a possible biomimetic for the arabinofuranosyl anomeric phosphate, is described. The furanosyl 1-C-sulfonate was prepared by buffered DMDO oxidation of an S-acetyl-1-thio-ß-arabinofuranose derivative. Deprotection under mild conditions allowed isolation of the free sulfonic acid without desulfonylation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...