Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 28(13): 2898-2910, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511927

RESUMEN

PURPOSE: The immunosuppressive tumor microenvironment present in the majority of diffuse glioma limits therapeutic response to immunotherapy. As the determinants of the glioma-associated immune response are relatively poorly understood, the study of glioma with more robust tumor-associated immune responses may be particularly useful to identify novel immunomodulatory factors that can promote T-cell effector function in glioma. EXPERIMENTAL DESIGN: We used multiplex immune-profiling, proteomic profiling, and gene expression analysis to define the tumor-associated immune response in two molecular subtypes of glioma and identify factors that may modulate this response. We then used patient-derived glioma cultures and an immunocompetent murine model for malignant glioma to analyze the ability of tumor-intrinsic factors to promote a CD8+ T-cell response. RESULTS: As compared with isocitrate dehydrogenase (IDH)-mutant astrocytoma, MAPK-activated pleomorphic xanthoastrocytoma (PXA) harbored increased numbers of activated cytotoxic CD8+ T cells and Iba1+ microglia/macrophages, increased MHC class I expression, enrichment of genes associated with antigen presentation and processing, and increased tumor cell secretion of the chemokine CXCL14. CXCL14 promoted activated CD8+ T-cell chemotaxis in vitro, recruited tumor-infiltrating CD8+ T cells in vivo, and prolonged overall survival in a cytotoxic T-cell-dependent manner. The immunomodulatory molecule B7-H3 was also highly expressed in PXA. CONCLUSIONS: We identify the MAPK-activated lower grade astrocytoma PXA as having an immune-rich tumor microenvironment and suggest this tumor may be particularly vulnerable to immunotherapeutic modulation. We also identify CXCL14 as an important determinant of the glioma-associated immune microenvironment, sufficient to promote an antitumor CD8+ T-cell response.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Quimiocinas CXC , Glioma , Animales , Neoplasias Encefálicas/patología , Quimiocinas CXC/metabolismo , Glioma/patología , Humanos , Inmunidad , Ratones , Proteómica , Microambiente Tumoral
2.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34882581

RESUMEN

BACKGROUNDLong-term prognosis of WHO grade II low-grade gliomas (LGGs) is poor, with a high risk of recurrence and malignant transformation into high-grade gliomas. Given the relatively intact immune system of patients with LGGs and the slow tumor growth rate, vaccines are an attractive treatment strategy.METHODSWe conducted a pilot study to evaluate the safety and immunological effects of vaccination with GBM6-AD, lysate of an allogeneic glioblastoma stem cell line, with poly-ICLC in patients with LGGs. Patients were randomized to receive the vaccines before surgery (arm 1) or not (arm 2) and all patients received adjuvant vaccines. Coprimary outcomes were to evaluate safety and immune response in the tumor.RESULTSA total of 17 eligible patients were enrolled - 9 in arm 1 and 8 in arm 2. This regimen was well tolerated with no regimen-limiting toxicity. Neoadjuvant vaccination induced upregulation of type-1 cytokines and chemokines and increased activated CD8+ T cells in peripheral blood. Single-cell RNA/T cell receptor sequencing detected CD8+ T cell clones that expanded with effector phenotype and migrated into the tumor microenvironment (TME) in response to neoadjuvant vaccination. Mass cytometric analyses detected increased tissue resident-like CD8+ T cells with effector memory phenotype in the TME after the neoadjuvant vaccination.CONCLUSIONThe regimen induced effector CD8+ T cell response in peripheral blood and enabled vaccine-reactive CD8+ T cells to migrate into the TME. Further refinements of the regimen may have to be integrated into future strategies.TRIAL REGISTRATIONClinicalTrials.gov NCT02549833.FUNDINGNIH (1R35NS105068, 1R21CA233856), Dabbiere Foundation, Parker Institute for Cancer Immunotherapy, and Daiichi Sankyo Foundation of Life Science.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer , Carboximetilcelulosa de Sodio/análogos & derivados , Glioma , Terapia Neoadyuvante , Poli I-C/administración & dosificación , Polilisina/análogos & derivados , Microambiente Tumoral/inmunología , Vacunación , Adulto , Anciano , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Carboximetilcelulosa de Sodio/administración & dosificación , Femenino , Glioma/inmunología , Glioma/terapia , Humanos , Masculino , Persona de Mediana Edad , Polilisina/administración & dosificación
3.
Cureus ; 12(10): e10896, 2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33194465

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for appropriate protective measures for health care providers, particularly for those involved in aerosol-generating procedures. We report the use of the banded bag for extubation to contain infectious aerosols. The banded bag is a clear and disposable shower-cap style image intensifier cover which is commonly used as a sterile cover for mobile X-ray systems. With the addition of a filtered suction, safe air exchange rates can be obtained. We anticipate that the banded bag, which is economical, convenient, and highly practical, can be used as a safety-enhancing device for COVID-19 extubations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...