Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Drugs R D ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700808

RESUMEN

BACKGROUND AND OBJECTIVES: Despite significant progress in biomedical research, the rate of success in oncology drug development remains inferior to that of other therapeutic fields. Mechanistic models provide comprehensive understanding of the therapeutic effects of drugs, which is crucial for designing effective clinical trials. This study was performed to acquire a better understanding of PI3K-AKT-TOR pathway modulation and preclinical to clinical translational bridging for a specific compound, apitolisib (PI3K/mTOR inhibitor), by developing integrated mechanistic models. METHODS: Integrated pharmacokinetic (PK)-pharmacodynamic (PD)-efficacy models were developed for xenografts bearing human renal cell adenocarcinoma and for patients with solid tumors (phase 1 studies) to characterize relationships between exposure of apitolisib, modulation of the phosphorylated Akt (pAkt) biomarker triggered by inhibition of the PI3K-AKT-mTOR pathway, and tumor response. RESULTS: Both clinical and preclinical integrated models show a steep sigmoid curve linking pAkt inhibition to tumor growth inhibition and quantified that a minimum of 35-45% pAkt modulation is required for tumor shrinkage in patients, based on platelet-rich plasma surrogate matrix and in xenografts based on tumor tissue matrix. Based on this relationship between targeted pAkt modulation and tumor shrinkage rate, it appeared that a constant pAkt inhibition of 61% and 65%, respectively, would be necessary to achieve tumor stasis in xenografts and patients. CONCLUSIONS: These results help when it comes to evaluating the translatability of the preclinical analysis to the clinical target, and provide information that will enhance the value of future preclinical translational dose-finding and dose-optimization studies to accelerate clinical drug development. TRIAL REGISTRY: ClinicalTrials.gov NCT00854152 and NCT00854126.

2.
J Clin Pharmacol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639108

RESUMEN

Cancer remains a significant global health challenge, and despite remarkable advancements in therapeutic strategies, poor tolerability of drugs (causing dose reduction/interruptions) and/or the emergence of drug resistance are major obstacles to successful treatment outcomes. Metastatic renal cell carcinoma (mRCC) accounts for 2% of global cancer diagnoses and deaths. Despite the initial success of targeted therapies in mRCC, challenges remain to overcome drug resistance that limits the long-term efficacy of these treatments. Our analysis aim was to develop a semi-mechanistic longitudinal exposure-tumor growth inhibition model for patients with mRCC to characterize and compare everolimus (mTORC1) and apitolisib's (dual PI3K/mTORC1/2) ability to inhibit tumor growth, and quantitate each drug's efficacy decay caused by emergence of tumor resistance over time. Model-estimated on-treatment tumor growth rate constant was 1.7-fold higher for apitolisib compared to everolimus. Estimated half-life for loss of treatment effect over time for everolimus was 16.1 weeks compared to 7.72 weeks for apitolisib, suggesting a faster rate of tumor re-growth for apitolisib patients likely due to the emergence of resistance. Goodness-of-fit plots including visual predictive check indicated a good model fit and the model was able to capture individual tumor size-time profiles. Based on our knowledge, this is the first clinical report to quantitatively assess everolimus (mTORC1) and apitolisib (PI3K/mTORC1/2) efficacy decay in patients with mRCC. These results highlight the difference in overall efficacy of 2 drugs due to the quantified efficacy decay caused by emergence of resistance, and emphasize the importance of model-informed drug development for targeted cancer therapy.

3.
Front Pharmacol ; 15: 1358393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495100

RESUMEN

Introduction: The development of bioconjugates for the targeted delivery of anticancer agents is gaining momentum after recent success of antibody drug conjugates (ADCs) in the clinic. Smaller format conjugates may have several advantages including better tumor penetration; however, cellular uptake and trafficking may be substantially different from ADCs. To fully leverage the potential of small molecule drug conjugates (SMDCs) with potent binding molecules mediating tumor homing, novel linker chemistries susceptible for efficient extracellular activation and payload release in the tumor microenvironment (TME) need to be explored. Methods: We designed a novel class of SMDCs, which target αvß3 integrins for tumor homing and are cleaved by neutrophil elastase (NE), a serine protease active in the TME. A peptidomimetic αvß3 ligand was attached via optimized linkers composed of substrate peptide sequences of NE connected to different functional groups of various payload classes, such as camptothecins, monomethyl auristatin E, kinesin spindle protein inhibitors (KSPi) and cyclin-dependent kinase 9 inhibitors (CDK-9i). Results: NE-mediated cleavage was found compatible with the diverse linker attachments via hindered ester bonds, amide bonds and sulfoximide bonds. Efficient and traceless release of the respective payloads was demonstrated in biochemical assays. The newly designed SMDCs were highly stable in buffer as well as in rat and human plasma. Cytotoxicity of the SMDCs in cancer cell lines was clearly dependent on NE. IC50 values were in the nanomolar or sub-nanomolar range across several cancer cell lines reaching similar potencies as compared to the respective payloads only in the presence of NE. In vivo pharmacokinetics evaluating SMDC and free payload exposures in rat and particularly the robust efficacy with good tolerability in triple negative breast and small cell lung cancer murine models demonstrate the utility of this approach for selective delivery of payloads to the tumor. Discussion: These results highlight the broad scope of potential payloads and suitable conjugation chemistries paving the way for future SMDCs harnessing the safety features of targeted delivery approaches in combination with NE cleavage in the TME.

4.
Clin Transl Sci ; 17(1): e13676, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37905360

RESUMEN

Exposure-response (ER) analysis is used to optimize dose and dose regimens during clinical development. Characterization of relationships between drug exposure and efficacy or safety outcomes can be utilized to make dose adjustments that improve patient response. Therapeutic antibodies typically show predictable pharmacokinetics (PK) but can exhibit clearance that decreases over time due to treatment. Moreover, time-dependent changes in clearance are frequently associated with drug response, with larger decreases in clearance and increased exposure seen in patients who respond to treatment. This often confounds traditional ER analysis, as drug response influences exposure rather than the reverse. In this review, we survey published population PK analyses for reported time-dependent drug clearance effects across 158 therapeutic antibodies approved or in regulatory review. We describe the mechanisms by which time-dependent clearance can arise, and evaluate trends in frequency, magnitude, and time scale of changes in clearance with respect to indication, mechanistic interpretation of time-dependence, and PK modeling techniques employed. We discuss the modeling and simulation strategies commonly used to characterize time-dependent clearance, and examples where time-dependent clearance has impeded ER analysis. A case study using population model simulation was explored to interrogate the impact of time-dependent clearance on ER analysis and how it can lead to spurious conclusions. Overall, time-dependent clearance arises frequently among therapeutic antibodies and has spurred erroneous conclusions in ER analysis. Appropriate PK modeling techniques aid in identifying and characterizing temporal shifts in exposure that may impede accurate ER assessment and successful dose optimization.


Asunto(s)
Modelos Biológicos , Humanos , Simulación por Computador , Relación Dosis-Respuesta a Droga
5.
Cancer Res Commun ; 3(11): 2268-2279, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37882668

RESUMEN

Double-hit diffuse large B-cell lymphoma (DH-DLBCL) is an aggressive, and often refractory, type of B-cell non-Hodgkin lymphoma (NHL) characterized by rearrangements in MYC and BCL2. Cyclin-dependent kinase 9 (CDK9) regulates transcriptional elongation and activation of transcription factors, including MYC, making it a potential targeted approach for the treatment of MYC+ lymphomas. Enitociclib is a well-tolerated and clinically active CDK9 inhibitor leading to complete metabolic remissions in 2 of 7 patients with DH-DLBCL treated with once weekly 30 mg intravenous administration. Herein, we investigate the pharmacodynamic effect of CDK9 inhibition in preclinical models and in blood samples from patients [DH-DLBCL (n = 10) and MYC+ NHL (n = 5)] treated with 30 mg i.v. once weekly enitociclib. Enitociclib shows significant regulation of RNA polymerase II Ser2 phosphorylation in a MYC-amplified SU-DHL-4 cell line and depletion of MYC and antiapoptosis protein MCL1 in SU-DHL-4 and MYC-overexpressing SU-DHL-10 cell lines in vitro. Tumor growth inhibition reaching 0.5% of control treated SU-DHL-10 xenografts is achieved in vivo and MYC and MCL1 depletion as well as evidence of apoptosis activation after enitociclib treatment is demonstrated. An unbiased analysis of the genes affected by CDK9 inhibition in both cell lines demonstrates that RNA polymerase II and transcription pathways are primarily affected and novel enitociclib targets such as PHF23 and TP53RK are discovered. These findings are recapitulated in blood samples from enitociclib-treated patients; while MYC downregulation is most robust with enitociclib treatment, other CDK9-regulated targets may be MYC independent delivering a transcriptional downregulation via RNA polymerase II. SIGNIFICANCE: MYC+ lymphomas are refractory to standard of care and novel treatments that downregulate MYC are needed. The utility of enitociclib, a selective CDK9 inhibitor in this patient population, is demonstrated in preclinical models and patients. Enitociclib inhibits RNA polymerase II function conferring a transcriptional shift and depletion of MYC and MCL1. Enitociclib intermittent dosing downregulates transcription factors including MYC, providing a therapeutic window for durable responses in patients with MYC+ lymphoma.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Linfoma de Células B Grandes Difuso , ARN Polimerasa II , Humanos , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Regulación hacia Abajo , Proteínas de Homeodominio/genética , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética
6.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686656

RESUMEN

The emerging field of small-molecule-drug conjugates (SMDCs) using small-molecule biomarker-targeted compounds for tumor homing may provide new perspectives for targeted delivery. Here, for the first time, we disclose the structure and the synthesis of VIP236, an SMDC designed for the treatment of metastatic solid tumors by targeting αvß3 integrins and extracellular cleavage of the 7-ethyl camptothecin payload by neutrophil elastase in the tumor microenvironment. Imaging studies in the Lewis lung mouse model using an elastase cleavable quenched substrate showed pronounced elastase activity in the tumor. Pharmacokinetics studies of VIP236 in tumor-bearing mice demonstrated high stability of the SMDC in plasma and high tumor accumulation of the cleaved payload. Studies in bile-duct-cannulated rats showed that biliary excretion of the unmodified conjugate is the primary route of elimination. Treatment- and time-dependent phosphorylation of H2AX, a marker of DNA damage downstream of topoisomerase 1 inhibition, verified the on-target activity of the payload cleaved from VIP236 in vivo. Treatment with VIP236 resulted in long-lasting tumor regression in subcutaneous patient-derived xenograft (PDX) models from patients with non-small-cell lung, colon, and renal cancer as well as in two orthotopic metastatic triple-negative breast cancer PDX models. In these models, a significant reduction of brain and lung metastases also was observed.

7.
Biomaterials ; 289: 121735, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36055815

RESUMEN

A small molecule drug with poor aqueous solubility can be conjugated to a hydrophilic polymer like poly(ethylene glycol) (PEG) to form an amphiphilic polymer-drug conjugate that self-assembles to form nanoparticles (NPs) with improved solubility and enhanced efficacy. This strategy has been extensively applied to improve the delivery of several small molecule drugs. However, very few reports have succeeded to tune the rate of drug release from these NPs. To the best of our knowledge, there have been no reports of utilizing click and steric hindrance chemistry to modulate the drug release of self-assembling polymer-drug conjugates. In this study, we utilized click chemistry to conjugate methoxy-PEG (mPEG) to an anti-tumor drug, paclitaxel (PTX). A focused library of PTX-Rx-mPEG (x = 0, 1, 2) conjugates were synthesized with different chemical modalities next to the cleavable ester bond to study the effect of increasing steric hindrance on the self-assembly process and the physicochemical properties of the resulting PTX-NPs. PTX-R0-mPEG had no added steric hindrance (x = 0; minimal), PTX-R1-mPEG consisted of two methyl groups (x = 1: moderate), and PTX-R2-mPEG consisted of a phenyl group (x = 2: significant). Drug release studies showed that PTX-NPs released PTX at a decreased rate with increasing steric hindrance. Pharmacokinetic studies showed that the AUC of released PTX from the moderate-release PTX-R1-NP was approximately 20-, 6-, and 3-fold higher than that from free PTX, PTX-R0-NP and PTX-R2-NP, respectively. As a result, among these different PTX formulations, PTX-R1-NP showed superior efficacy in inducing tumor regression and prolonging the animal survival. The tumors treated with PTX-R1-NP displayed the lowest tumor progression markers (Ki68 and CD31) and the highest apoptotic marker (TUNEL) compared to the others. This work emphasizes the importance of taking a systematic approach in designing self-assembling polymer drug conjugates and highlights the potential of utilizing steric hindrance as a tool to tune the drug release rate from such systems.


Asunto(s)
Antineoplásicos , Nanopartículas , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Ésteres , Nanopartículas/química , Paclitaxel/uso terapéutico , Polietilenglicoles/química , Polímeros/química
8.
Drug Metab Dispos ; 50(9): 1170-1181, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779865

RESUMEN

Predicting human pharmacokinetics (PK) during the drug discovery phase is valuable to assess doses required to reach therapeutic exposures. For orally administered compounds, however, this can be especially difficult, since the absorption process is complex. Vismodegib is a compound with unique nonlinear oral PK characteristics in humans. Oral physiologically based pharmacokinetic (PBPK) models were built using preclinical in vitro and in vivo data and successfully predicted the oral PK profiles in rats, dogs, and monkeys. Simulated drug exposures (area under the concentration-time curve from time 0 to infinity and Cmax) following oral administration were within twofold of observed values for dogs and monkeys, and close to twofold for rats, providing validation to the model structure. Adaptation of this oral PBPK model to humans, using human physiologic parameters coupled with predicted human PK, resulted in underpredictions of vismodegib exposure following both single and multiple doses. When observed human PK was used to drive the oral PBPK model, oral PK profiles in humans were well predicted, with fold errors in predicted versus observed drug exposures being close to 1. Importantly, the oral PBPK model captured the unique nonlinear, nondose-dependent PK of vismodegib at a steady state. The mechanism responsible for nonlinearity was consistent with oral absorption being influenced by nonsink permeation conditions. We introduce a new parameter, the permeation gradient factor, to characterize the effect of nonsink conditions on permeation. Using vismodegib as an example, we demonstrate the value of using oral PBPK models in drug discovery to predict the oral PK of compounds with nonlinear absorption characteristics in human. SIGNIFICANCE STATEMENT: A physiologically based pharmacokinetic (PBPK) model was built to demonstrate the value of these models early in the drug discovery stage for the prediction of human pharmacokinetics for compounds with unusual oral pharmacokinetics. In this study, our PBPK model could successfully capture the unique steady-state oral pharmacokinetics of our model compound, vismodegib. The mechanism for nonlinearity can be attributed to nonsink permeation conditions in vivo. We introduce the permeation gradient factor as a parameter to assess this effect.


Asunto(s)
Anilidas , Modelos Biológicos , Animales , Simulación por Computador , Perros , Haplorrinos , Humanos , Piridinas/farmacocinética , Ratas
9.
J Med Chem ; 65(13): 8713-8734, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35790118

RESUMEN

The "free drug hypothesis" assumes that, in the absence of transporters, the steady state free plasma concentrations equal to that at the site of action that elicit pharmacologic effects. While it is important to utilize the free drug hypothesis, exceptions exist that the free plasma exposures, either at Cmax, Ctrough, and Caverage, or at other time points, cannot represent the corresponding free tissue concentrations. This "drug concentration asymmetry" in both total and free form can influence drug disposition and pharmacological effects. In this review, we first discuss options to assess total and free drug concentrations in tissues. Then various drug design strategies to achieve concentration asymmetry are presented. Last, the utilities of tissue concentrations in understanding exposure-effect relationships and translational projections to humans are discussed for several therapeutic areas and modalities. A thorough understanding in plasma and tissue exposures correlation with pharmacologic effects can provide insightful guidance to aid drug discovery.


Asunto(s)
Descubrimiento de Drogas , Plasma , Humanos , Proteínas de Transporte de Membrana
10.
Sci Transl Med ; 14(648): eabj2658, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35675433

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic risk factors for Parkinson's disease (PD). Increased LRRK2 kinase activity is thought to impair lysosomal function and may contribute to the pathogenesis of PD. Thus, inhibition of LRRK2 is a potential disease-modifying therapeutic strategy for PD. DNL201 is an investigational, first-in-class, CNS-penetrant, selective, ATP-competitive, small-molecule LRRK2 kinase inhibitor. In preclinical models, DNL201 inhibited LRRK2 kinase activity as evidenced by reduced phosphorylation of both LRRK2 at serine-935 (pS935) and Rab10 at threonine-73 (pT73), a direct substrate of LRRK2. Inhibition of LRRK2 by DNL201 demonstrated improved lysosomal function in cellular models of disease, including primary mouse astrocytes and fibroblasts from patients with Gaucher disease. Chronic administration of DNL201 to cynomolgus macaques at pharmacologically relevant doses was not associated with adverse findings. In phase 1 and phase 1b clinical trials in 122 healthy volunteers and in 28 patients with PD, respectively, DNL201 at single and multiple doses inhibited LRRK2 and was well tolerated at doses demonstrating LRRK2 pathway engagement and alteration of downstream lysosomal biomarkers. Robust cerebrospinal fluid penetration of DNL201 was observed in both healthy volunteers and patients with PD. These data support the hypothesis that LRRK2 inhibition has the potential to correct lysosomal dysfunction in patients with PD at doses that are generally safe and well tolerated, warranting further clinical development of LRRK2 inhibitors as a therapeutic modality for PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Animales , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Lisosomas/metabolismo , Ratones , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Fosforilación
11.
ERJ Open Res ; 8(2)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35479295

RESUMEN

Receipt of sufficient COPD medication has improved over time; however, recommended therapy continues to be underused, especially in patients at lower risk of COPD exacerbation https://bit.ly/3IhK5Y4.

12.
BMC Cancer ; 22(1): 468, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484614

RESUMEN

BACKGROUND: Research in treatment of non-small cell lung cancer (NSCLC) has shown promising results with stereotactic ablative radiotherapy (SABR) of oligometastatic disease, wherein distant disease may be limited to one or a few distant organs by host factors. Traditionally, PET/CT has been used in detecting metastatic disease and avoiding futile surgical intervention, however, sensitivity and specificity is limited to only 81 and 79%, respectively. Mediastinal staging still identifies occult nodal disease in up to 20% of NSCLC patients initially thought to be operative candidates. Endobronchial ultrasound and transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive tool for the staging and diagnosis of thoracic malignancy. When EBUS is combined with endoscopic ultrasound using the same bronchoscope (EUS-B), the diagnostic sensitivity and negative predictive value increase to 84 and 97%, respectively. Endoscopic staging in patients with advanced disease has never been studied, but may inform treatment if a curative SABR approach is being taken. METHODS: This is a multi-centre, prospective, cohort study with two-stage design. In the first stage, 10 patients with oligometastatic NSCLC (lung tumour ± hilar/mediastinal lymphadenopathy) with up to 5 synchronous metastases will be enrolled An additional 19 patients will be enrolled in the second stage if rate of treatment change is greater than 10% in the first stage. Patients will be subject to EBUS or combined modality EBUS/EUS-B to assess bilateral lymph node stations using a N3 to N2 to N1 progression. Primary endpoint is defined as the rate of change to treatment plan including change from SABR to conventional dose radiation, change in mediastinal radiation field, and change from curative to palliative intent treatment. DISCUSSION: If a curative approach with SABR for oligometastatic disease is being explored, invasive mediastinal staging may guide treatment and prognosis. This study will provide insight into the use of endoscopic mediastinal staging in determining changes in treatment plan of NSCLC. Results will inform the design of future phase II trials. TRIAL REGISTRATION: Clinicaltrials.gov identifier NCT04852588. Date of registration: April 19, 2021. PROTOCOL VERSION: 1.1 on December 9, 2021.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Metástasis Linfática/radioterapia , Estadificación de Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Prospectivos
13.
Cancers (Basel) ; 14(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35053556

RESUMEN

To improve tumor selectivity of cytotoxic agents, we designed VIP236, a small molecule-drug conjugate consisting of an αVß3 integrin binder linked to a modified camptothecin payload (VIP126), which is released by the enzyme neutrophil elastase (NE) in the tumor microenvironment (TME). The tumor targeting and pharmacokinetics of VIP236 were studied in tumor-bearing mice by in vivo near-infrared imaging and by analyzing tumor and plasma samples. The efficacy of VIP236 was investigated in a panel of cancer cell lines in vitro, and in MX-1, NCI-H69, and SW480 murine xenograft models. Imaging studies with the αVß3 binder demonstrated efficient tumor targeting. Administration of VIP126 via VIP236 resulted in a 10-fold improvement in the tumor/plasma ratio of VIP126 compared with VIP126 administered alone. Unlike SN38, VIP126 is not a substrate of P-gp and BCRP drug transporters. VIP236 presented strong cytotoxic activity in the presence of NE. VIP236 treatment resulted in tumor regressions and very good tolerability in all in vivo models tested. VIP236 represents a novel approach for delivering a potent cytotoxic agent by utilizing αVß3 as a targeting moiety and NE in the TME to release the VIP126 payload-designed for high permeability and low efflux-directly into the tumor stroma.

14.
Clin Cancer Res ; 28(7): 1285-1293, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35046056

RESUMEN

PURPOSE: To report on the first-in-human phase I study of VIP152 (NCT02635672), a potent and highly selective cyclin-dependent kinase 9 (CDK9) inhibitor. PATIENTS AND METHODS: Adults with solid tumors or aggressive non-Hodgkin lymphoma who were refractory to or had exhausted all available therapies received VIP152 monotherapy as a 30-minute intravenous, once-weekly infusion, as escalating doses (5, 10, 15, 22.5, or 30 mg in 21-day cycles) until the MTD was determined. RESULTS: Thirty-seven patients received ≥ 1 VIP152 dose, with 30 mg identified as the MTD based on dose-limiting toxicity of grade 3/4 neutropenia. The most common adverse events were nausea and vomiting (75.7% and 56.8%, respectively), all of grade 1/2 severity. Of the most common events, grade 3/4 events occurring in > 1 patient were neutropenia (22%), anemia (11%), abdominal pain (8%), increased alkaline phosphatase (8%), and hyponatremia (8%). Day 1 exposure for the MTD exceeded the predicted minimum therapeutic exposure and reproducibly achieved maximal pathway modulation; no accumulation occurred after multiple doses. Seven of 30 patients with solid tumors had stable disease (including 9.5 and 16.8 months in individual patients with pancreatic cancer and salivary gland cancer, respectively), and 2 of 7 patients with high-grade B-cell lymphoma with MYC and BCL2/BCL6 translocations (HGL) achieved durable complete metabolic remission (ongoing at study discontinuation, after 3.7 and 2.3 years of treatment). CONCLUSIONS: VIP152 monotherapy, administered intravenously once weekly, demonstrated a favorable safety profile and evidence of clinical benefit in patients with advanced HGL and solid tumors.


Asunto(s)
Neoplasias , Neutropenia , Adulto , Quinasa 9 Dependiente de la Ciclina , Relación Dosis-Respuesta a Droga , Humanos , Dosis Máxima Tolerada , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Resultado del Tratamiento
15.
Clin Pharmacol Ther ; 110(3): 803-807, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33884615

RESUMEN

One of the challenges in translational medicine is to select first-in-human doses of investigational drugs based on findings in preclinical studies. Despite substantial progress in the optimization of recombinant adeno-associated virus (AAV) vectors of in vivo gene therapy for treating various diseases, there remain significant limitations to the use of preclinical data to guide dose selection in clinical trials. Here we introduce a novel concept of gene efficiency factor (GEF) to describe the efficiency of the gene transfer system and describe and apply the concept of GEF in AAV-mediated in vivo gene transfer systems. We explore the utility of allometric scaling to translate GEF across species using AAV-mediated in vivo factor IX (FIX) gene therapy for hemophilia B and to demonstrate the use of GEF in predicting efficacious AAV vector doses in humans. We show for the first time that an allometric relationship exists for GEF of AAV-mediated in vivo gene therapy. Furthermore, we demonstrate the feasibility of using the allometric relationship of GEF to select efficacious first-in-human doses of virus-mediated invivo gene therapy. Based on our findings, allometry of GEF can be used to translate biological efficiency from animal studies to clinical studies and provide a rational basis of setting first-in-human doses for new virus-mediated invivo gene therapy products.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Animales , Factor IX/genética , Técnicas de Transferencia de Gen , Hemofilia B/genética , Humanos
16.
ACS Med Chem Lett ; 11(8): 1588-1597, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32832028

RESUMEN

Bruton's tyrosine kinase (Btk) is thought to play a pathogenic role in chronic immune diseases such as rheumatoid arthritis and lupus. While covalent, irreversible Btk inhibitors are approved for treatment of hematologic malignancies, they are not approved for autoimmune indications. In efforts to develop additional series of reversible Btk inhibitors for chronic immune diseases, we sought to differentiate from our clinical stage inhibitor fenebrutinib using cyclopropyl amide isosteres of the 2-aminopyridyl group to occupy the flat, lipophilic H2 pocket. While drug-like properties were retained-and in some cases improved-a safety liability in the form of hERG inhibition was observed. When a fluorocyclopropyl amide was incorporated, Btk and off-target activity was found to be stereodependent and a lead compound was identified in the form of the (R,R)- stereoisomer.

17.
Pharmaceutics ; 12(7)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32708881

RESUMEN

The bioavailability of an orally administered small molecule is often dictated by drug-specific physicochemical characteristics and is influenced by many biological processes. For example, in fed or fasted conditions, the transit time within the gastrointestinal tract can vary, confounding the ability to predict the oral absorption. As such, the effects of food on the pharmacokinetics of compounds in the various biopharmaceutics classification system (BCS) classes need to be assessed. The consumption of food leads to physiological changes, including fluctuations in the gastric and intestinal pH, a delay in gastric emptying, an increased bile secretion, and an increased splanchnic and hepatic blood flow. Despite the significant impact of a drug's absorption and dissolution, food effects have not been fully studied and are often overlooked. Physiologically-based pharmacokinetic (PBPK) models can be used to mechanistically simulate a compound's pharmacokinetics under fed or fasted conditions, while integrating drug properties such as solubility and permeability. This review discusses the PBPK models published in the literature predicting the food effects, the models' strengths and shortcomings, as well as future steps to mitigate the current knowledge gap. We observed gaps in knowledge which limits the ability of PBPK models to predict the negative food effects and food effects in the pediatric population. Overall, the further development of PBPK models to predict food effects will provide a mechanistic basis to understand a drug's behavior in fed and fasted conditions, and will help enable the drug development process.

18.
J Pharmacol Exp Ther ; 369(3): 406-418, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30940693

RESUMEN

The ability of rodent immune-mediated arthritis models to quantitatively predict therapeutic activity of antiarthritis agents is poorly understood. Two commonly used preclinical models of arthritis are adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) in rats. The objective of the current study is to investigate the relationship between efficacy in AIA and CIA in rats, and clinical efficacy in rheumatoid arthritis patients using translational pharmacokinetic-pharmacodynamic (PK-PD) analysis. A range of doses of indomethacin (a nonsteroidal anti-inflammatory drug), and three disease-modifying antirheumatic drugs (DMARDs), methotrexate, etanercept, and tofacitinib, were evaluated in AIA and CIA rats. Dexamethasone was included in this study as a positive control. The area under the ankle diameter-time profile (AUCankle) and ankle histopathology summed scores (AHSS) were used as efficacy endpoints for activity against disease symptoms (joint inflammation) and disease progression (joint damage), respectively. Translational PK-PD analysis was performed to rank order preclinical efficacy endpoints at clinically relevant concentrations. For each drug tested, inhibition of AUCankle and AHSS scores was generally comparable in both magnitude and rank order. Overall, based on both AUCankle and the AHSS inhibition, the rank ordering of preclinical activity for the DMARDs evaluated was tofacitinib > etanercept ≥ methotrexate. This ranking of preclinical efficacy was consistent with reported clinical efficacy. Of interest, indomethacin showed equal or often better efficacy than the three DMARDs evaluated on inhibiting AHSS despite having limited ability to prevent joint damage clinically in patients. The translational value of performing PK-PD analysis of arthritis models in rats is discussed.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/farmacocinética , Antirreumáticos/farmacología , Antirreumáticos/farmacocinética , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Investigación Biomédica Traslacional , Animales , Tobillo/patología , Antiinflamatorios no Esteroideos/uso terapéutico , Antirreumáticos/uso terapéutico , Artritis Experimental/patología , Relación Dosis-Respuesta a Droga , Masculino , Ratas
19.
Xenobiotica ; 49(12): 1423-1433, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30794022

RESUMEN

Several physiologically-based pharmacokinetic (PBPK) models have been reported for intravenous (IV) and subcutaneous (SC) injections, but there has been a paucity of work for intramuscular (IM) injections. The primary objective of this work was a wide-scale evaluation of the predictive performance of IM PBPK models of therapeutic proteins. PBPK models for all administration routes available in the literature have regarded muscle as the total muscle (TM) in the body; however, anatomically, the body is composed of discrete muscle groups. Clinically, IM is administered to a specific muscle (SM). We explored the predictive performance of IM PBPK models with an SM or TM dosing site. The plasma concentration-time profiles of seven therapeutic proteins after an IM dose in humans served as the clinically observed data for model evaluation - this was a diverse group ranging from 30 to 149 kDa from six protein classes. Pharmacokinetic parameters Cmax, tmax, AUC0-∞, and ka were estimated. SM and TM IM PBPK approaches were compared using Average Fold Error (AFE) and Pearson Chi-Square LineShape analyses. This work represents the first wide-scale validation of IM PBPK models and suggests that these models predict IM PBPK reasonably well. The SM and TM approach provided comparable performance.


Asunto(s)
Inyecciones Intramusculares , Proteínas/administración & dosificación , Proteínas/farmacocinética , Área Bajo la Curva , Humanos , Modelos Biológicos , Proteínas/uso terapéutico
20.
J Pharm Sci ; 108(6): 1934-1943, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30639736

RESUMEN

Solubilization of new chemical entities for toxicity assessment must use excipients that do not negatively impact drug pharmacokinetics and toxicology. In this study, we investigated the tolerability of a model freebase compound, GDC-0152, solubilized by pH adjustment with succinic acid and complexation with hydroxypropyl-ß-cyclodextrin (HP-ß-CD) to enable intravenous use. Solubility, critical micelle concentration, and association constant with HP-ß-CD were determined. Blood compatibility and potential for hemolysis were assessed in vitro. Local tolerability was assessed after intravenous and subcutaneous injections in rats. A pharmacokinetic study was conducted in rats after intravenous bolus administration. GDC-0152 exhibited pH-dependent solubility that was influenced by self-association. The presence of succinic acid increased solubility in a concentration-dependent manner. HP-ß-CD alone also increased solubility, but the extent of solubility enhancement was significantly lower than succinic acid alone. Inclusion of HP-ß-CD in the solution of GDC-0152 improved blood compatibility, reduced hemolytic potential by ∼20-fold in vitro, and increased the maximum tolerated dose to 80 mg/kg.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Ciclohexanos/toxicidad , Evaluación Preclínica de Medicamentos/métodos , Excipientes/farmacocinética , Pirroles/toxicidad , Pruebas de Toxicidad Aguda/métodos , 2-Hidroxipropil-beta-Ciclodextrina/administración & dosificación , Animales , Ciclohexanos/administración & dosificación , Ciclohexanos/farmacocinética , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Excipientes/administración & dosificación , Hemólisis/efectos de los fármacos , Inyecciones Intravenosas , Inyecciones Subcutáneas , Masculino , Dosis Máxima Tolerada , Modelos Animales , Pirroles/administración & dosificación , Pirroles/farmacocinética , Ratas , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...