Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Haematologica ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356460

RESUMEN

ETV6::ACSL6 represents a rare genetic aberration in hematopoietic neoplasms and is often associated with severe eosinophilia, which confers an unfavorable prognosis requiring additional anti-inflammatory treatment. However, since the translocation is unlikely to produce a fusion protein, the mechanism of ETV6::ACSL6 action remains unclear. Here, we performed multi-omics analyses of primary leukemia cells and patient-derived xenografts from an acute lymphoblastic leukemia (ALL) patient with ETV6::ACSL6 translocation. We identified a super-enhancer located within the ETV6 gene locus and revealed translocation and activation of the super-enhancer associated with the ETV6::ACSL6 fusion. The translocated super-enhancer exhibited intense interactions with genomic regions adjacent to and distal from the breakpoint at chromosomes 5 and 12, including genes coding inflammatory factors such as IL-3. This led to modulations in DNA methylation, histone modifications, and chromatin structures, triggering transcription of inflammatory factors leading to eosinophilia. Furthermore, the bromodomain and extraterminal domain (BET) inhibitor synergized with standard-of-care drugs for ALL, effectively reducing IL-3 expression and inhibiting ETV6::ACSL6 ALL growth in vitro and in vivo. Overall, our study revealed for the first time a cis-regulatory mechanism of super-enhancer translocation in ETV6::ACSL6 ALL, leading to ALL-accompanying clinical syndrome. These findings may stimulate novel treatment approaches for this challenging ALL subtype.

2.
Blood ; 143(16): 1586-1598, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38211335

RESUMEN

ABSTRACT: Maintenance of quiescence and DNA replication dynamics are 2 paradoxical requirements for the distinct states of dormant and active hematopoietic stem cells (HSCs), which are required to preserve the stem cell reservoir and replenish the blood cell system in response to hematopoietic stress, respectively. Here, we show that key self-renewal factors, ß-catenin or Hoxa9, largely dispensable for HSC integrity, in fact, have dual functions in maintaining quiescence and enabling efficient DNA replication fork dynamics to preserve the functionality of hematopoietic stem and progenitor cells (HSPCs). Although ß-catenin or Hoxa9 single knockout (KO) exhibited mostly normal hematopoiesis, their coinactivation led to severe hematopoietic defects stemmed from aberrant cell cycle, DNA replication, and damage in HSPCs. Mechanistically, ß-catenin and Hoxa9 function in a compensatory manner to sustain key transcriptional programs that converge on the pivotal downstream target and epigenetic modifying enzyme, Prmt1, which protects the quiescent state and ensures an adequate supply of DNA replication and repair factors to maintain robust replication fork dynamics. Inactivation of Prmt1 phenocopied both cellular and molecular phenotypes of ß-catenin/Hoxa9 combined KO, which at the same time could also be partially rescued by Prmt1 expression. The discovery of the highly resilient ß-catenin/Hoxa9/Prmt1 axis in protecting both quiescence and DNA replication dynamics essential for HSCs at different key states provides not only novel mechanistic insights into their intricate regulation but also a potential tractable target for therapeutic intervention.


Asunto(s)
Células Madre Hematopoyéticas , beta Catenina , beta Catenina/metabolismo , Células Madre Hematopoyéticas/metabolismo , Ciclo Celular , División Celular , Replicación del ADN
3.
Brain Sci ; 14(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275528

RESUMEN

Whereas traditional histology and light microscopy require multiple steps of formalin fixation, paraffin embedding, and sectioning to generate images for pathologic diagnosis, Microscopy using Ultraviolet Surface Excitation (MUSE) operates through UV excitation on the cut surface of tissue, generating images of high resolution without the need to fix or section tissue and allowing for potential use for downstream molecular tests. Here, we present the first study of the use and suitability of MUSE microscopy for neuropathological samples. MUSE images were generated from surgical biopsy samples of primary and metastatic brain tumor biopsy samples (n = 27), and blinded assessments of diagnoses, tumor grades, and cellular features were compared to corresponding hematoxylin and eosin (H&E) images. A set of MUSE-treated samples subsequently underwent exome and targeted sequencing, and quality metrics were compared to those from fresh frozen specimens. Diagnostic accuracy was relatively high, and DNA and RNA integrity appeared to be preserved for this cohort. This suggests that MUSE may be a reliable method of generating high-quality diagnostic-grade histologic images for neuropathology on a rapid and sample-sparing basis and for subsequent molecular analysis of DNA and RNA.

4.
Nucleic Acids Res ; 52(D1): D1131-D1137, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37870453

RESUMEN

The BloodChIP Xtra database (http://bloodchipXtra.vafaeelab.com/) facilitates genome-wide exploration and visualization of transcription factor (TF) occupancy and chromatin configuration in rare primary human hematopoietic stem (HSC-MPP) and progenitor (CMP, GMP, MEP) cells and acute myeloid leukemia (AML) cell lines (KG-1, ME-1, Kasumi1, TSU-1621-MT), along with chromatin accessibility and gene expression data from these and primary patient AMLs. BloodChIP Xtra features significantly more datasets than our earlier database BloodChIP (two primary cell types and two cell lines). Improved methodologies for determining TF occupancy and chromatin accessibility have led to increased availability of data for rare primary cell types across the spectrum of healthy and AML hematopoiesis. However, there is a continuing need for these data to be integrated in an easily accessible manner for gene-based queries and use in downstream applications. Here, we provide a user-friendly database based around genome-wide binding profiles of key hematopoietic TFs and histone marks in healthy stem/progenitor cell types. These are compared with binding profiles and chromatin accessibility derived from primary and cell line AML and integrated with expression data from corresponding cell types. All queries can be exported to construct TF-gene and protein-protein networks and evaluate the association of genes with specific cellular processes.


Asunto(s)
Sitios de Unión , Perfilación de la Expresión Génica , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Regulación de la Expresión Génica , Leucemia Mieloide Aguda/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Med ; 4(10): 728-743.e7, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37633269

RESUMEN

BACKGROUND: Identifying a metastasis-correlated immune cell composition within the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) will help to develop promising and innovative therapeutic strategies. However, the dynamics of immune cell lineages in the TME of advanced PDAC remains elusive. METHODS: Twenty-six samples from 11 patients (including 11 primary tumor tissues, 10 blood, and 5 lymph nodes) with different stages were used to develop a multiscale immune profile. High-dimensional single-cell analysis with mass cytometry was performed to search for metastasis-correlated immune changes in the microenvironment. The findings were further validated by published single-cell RNA sequencing (scRNA-seq) data and multiplex fluorescent immunohistochemistry. FINDINGS: High-dimensional single-cell profiling revealed that the three immune-relevant sites formed a distinct immune atlas. Interestingly, the PDAC microenvironment with the potential for metastatic spread to the liver was characterized by a decreased proportion of CD103+PD-1+CD39+ T cells with cytotoxic and exhausted functional status and an increased proportion of CD73+ macrophages. Analysis of scRNA-seq data of PDAC further confirmed the identified subsets and revealed strong potential interactions via various ligand-receptor pairs between the identified T subsets and the macrophages. Moreover, stratified patients with different immune compositions correlated with clinical outcomes of PDAC. CONCLUSIONS: Our study uncovered metastasis-correlated immune changes, suggesting that ecosystem-based patient classification in PDAC will facilitate the identification of candidates likely to benefit from immunotherapy. FUNDING: This work was supported by the National Key Research and Development Program of China, the Shanghai International Science and Technology Collaboration Program, the Shanghai Sailing Program, and the Key Laboratory of diagnosis and treatment of severe hepato-pancreatic diseases of Zhejiang Province.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Ecosistema , China , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente Tumoral , Neoplasias Pancreáticas
6.
Lancet Reg Health West Pac ; 36: 100775, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37547050

RESUMEN

Background: The integration of next-generation sequencing (NGS) comprehensive gene profiling (CGP) into clinical practice is playing an increasingly important role in oncology. Therefore, the HKU-HKSH Multi-disciplinary Molecular Tumour Board (MTB) was established to advance precision oncology in Hong Kong. A multicenter retrospective study investigated the feasibility of the HKU-HKSH MTB in determining genome-guided therapy for treatment-refractory solid cancers in Hong Kong. Methods: Patients who were presented at the HKU-HKSH MTB between August 2018 and June 2022 were included in this study. The primary study endpoints were the proportion of patients who receive MTB-guided therapy based on genomic analysis and overall survival (OS). Secondary endpoints included the proportion of patients with actionable genomic alterations, objective response rate (ORR), and disease control rate (DCR). The Kaplan-Meier method was used in the survival analyses, and hazard ratios were calculated using univariate Cox regression. Findings: 122 patients were reviewed at the HKU-HKSH MTB, and 63% (n = 77) adopted treatment per the MTB recommendations. These patients achieved a significantly longer median OS than those who did not receive MTB-guided therapy (12.7 months vs. 5.2 months, P = 0.0073). Their ORR and DCR were 29% and 65%, respectively. Interpretation: Our study demonstrated that among patients with heavily pre-treated advanced solid cancers, MTB-guided treatment could positively impact survival outcomes, thus illustrating the applicability of NGS CGPs in real-world clinical practice. Funding: The study was supported by the Li Shu Pui Medical Foundation. Dr Aya El Helali was supported by the Li Shu Pui Medical Foundation Fellowship grant from the Li Shu Pui Medical Foundation. Funders had no role in study design, data collection, data analysis, interpretation, or writing of the report.

7.
Blood ; 142(17): 1448-1462, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37595278

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay among transcription factors (TFs) to regulate differentiation into mature blood cells. A heptad of TFs (FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2) bind regulatory elements in bulk CD34+ HSPCs. However, whether specific heptad-TF combinations have distinct roles in regulating hematopoietic differentiation remains unknown. We mapped genome-wide chromatin contacts (HiC, H3K27ac, HiChIP), chromatin modifications (H3K4me3, H3K27ac, H3K27me3) and 10 TF binding profiles (heptad, PU.1, CTCF, STAG2) in HSPC subsets (stem/multipotent progenitors plus common myeloid, granulocyte macrophage, and megakaryocyte erythrocyte progenitors) and found TF occupancy and enhancer-promoter interactions varied significantly across cell types and were associated with cell-type-specific gene expression. Distinct regulatory elements were enriched with specific heptad-TF combinations, including stem-cell-specific elements with ERG, and myeloid- and erythroid-specific elements with combinations of FLI1, RUNX1, GATA2, TAL1, LYL1, and LMO2. Furthermore, heptad-occupied regions in HSPCs were subsequently bound by lineage-defining TFs, including PU.1 and GATA1, suggesting that heptad factors may prime regulatory elements for use in mature cell types. We also found that enhancers with cell-type-specific heptad occupancy shared a common grammar with respect to TF binding motifs, suggesting that combinatorial binding of TF complexes was at least partially regulated by features encoded in DNA sequence motifs. Taken together, this study comprehensively characterizes the gene regulatory landscape in rare subpopulations of human HSPCs. The accompanying data sets should serve as a valuable resource for understanding adult hematopoiesis and a framework for analyzing aberrant regulatory networks in leukemic cells.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Células Madre Hematopoyéticas , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Hematopoyéticas/metabolismo , Regulación de la Expresión Génica , Hematopoyesis/genética , Cromatina/metabolismo
8.
iScience ; 26(6): 106881, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37260745

RESUMEN

Mass spectrometry (MS)-based untargeted metabolomic and lipidomic approaches are being used increasingly in biomedical research. The adoption and integration of these data are critical to the overall multi-omic toolkit. Recently, a sample extraction method called Multi-ABLE has been developed, which enables concurrent generation of proteomic and untargeted metabolomic and lipidomic data from a small amount of tissue. The proteomics field has a well-established set of software for processing of acquired data; however, there is a lack of a unified, off-the-shelf, ready-to-use bioinformatics pipeline that can take advantage of and prepare concurrently generated metabolomic and lipidomic data for joint downstream analyses. Here we present an R pipeline called MultiABLER as a unified and simple upstream processing and analysis pipeline for both metabolomics and lipidomics datasets acquired using liquid chromatography-tandem mass spectrometry. The code is available via an open-source license at https://github.com/holab-hku/MultiABLER.

9.
Genome Med ; 14(1): 124, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316687

RESUMEN

BACKGROUND: Ganciclovir (GCV) is widely used in solid organ and haematopoietic stem cell transplant patients for prophylaxis and treatment of cytomegalovirus. It has long been considered a mutagen and carcinogen. However, the contribution of GCV to cancer incidence and other factors that influence its mutagenicity remains unknown. METHODS: This retrospective cohort study analysed genomics data for 121,771 patients who had undergone targeted sequencing compiled by the Genomics Evidence Neoplasia Information Exchange (GENIE) or Foundation Medicine (FM). A statistical approach was developed to identify patients with GCV-associated mutational signature (GCVsig) from targeted sequenced data of tumour samples. Cell line exposure models were further used to quantify mutation burden and DNA damage caused by GCV and other antiviral and immunosuppressive drugs. RESULTS: Mutational profiles from 22 of 121,771 patient samples in the GENIE and FM cohorts showed evidence of GCVsig. A diverse range of cancers was represented. All patients with detailed clinical history available had previously undergone solid organ transplantation and received GCV and mycophenolate treatment. RAS hotspot mutations associated with GCVsig were present in 9 of the 22 samples, with all samples harbouring multiple GCV-associated protein-altering mutations in cancer driver genes. In vitro testing in cell lines showed that elevated DNA damage response and GCVsig are uniquely associated with GCV but not acyclovir, a structurally similar antiviral. Combination treatment of GCV with the immunosuppressant, mycophenolate mofetil (MMF), increased the misincorporation of GCV in genomic DNA and mutations attributed to GCVsig in cell lines and organoids. CONCLUSIONS: In summary, GCV can cause a diverse range of cancers. Its mutagenicity may be potentiated by other therapies, such as mycophenolate, commonly co-prescribed with GCV for post-transplant patients. Further investigation of the optimal use of these drugs could help reduce GCV-associated mutagenesis in post-transplant patients.


Asunto(s)
Infecciones por Citomegalovirus , Ganciclovir , Neoplasias , Humanos , Antivirales/efectos adversos , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/prevención & control , Ganciclovir/efectos adversos , Inmunosupresores/efectos adversos , Mutación , Neoplasias/inducido químicamente , Neoplasias/genética , Estudios Retrospectivos
10.
FASEB J ; 36(5): e22296, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35363392

RESUMEN

Metabolic reprogramming is a hallmark of cancer characterized by global changes in metabolite levels. However, compared with the study of gene expression, profiling of metabolites in cancer samples remains relatively understudied. We obtained metabolomic profiling and gene expression data from 454 human solid cancer cell lines across 24 cancer types from the Cancer Cell Line Encyclopedia (CCLE) database, to evaluate the feasibility of inferring metabolite levels from gene expression data. For each metabolite, we trained multivariable LASSO regression models to identify gene sets that are most predictive of the level of each metabolite profiled. Even when accounting for cell culture conditions or cell lineage in the model, few metabolites could be accurately predicted. In some cases, the inclusion of the upstream and downstream metabolites improved prediction accuracy, suggesting that gene expression is a poor predictor of steady-state metabolite levels. Our analysis uncovered a single robust relationship between the expression of nicotinamide N-methyltransferase (NNMT) and 1-methylnicotinamide (MNA), however, this relationship could only be validated in cancer samples with high purity, as NNMT is not expressed in immune cells. Together, we have trained models that use gene expression profiles to predict the level of individual metabolites. Our analysis suggests that inferring metabolite levels based on the expression of genes is generally challenging in cancer.


Asunto(s)
Metabolómica , Neoplasias , Bases de Datos Factuales , Expresión Génica , Humanos , Neoplasias/genética
11.
Cancer Res Commun ; 2(8): 814-826, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36923309

RESUMEN

Purpose: Drug repurposing offers the opportunity for chemotherapy to be used to reestablish sensitivity to immune checkpoint blockade (ICB) therapy. Here we investigated the clinical and translational aspects of an early phase II study of azacitidine and carboplatin priming for anti-PDL1 immunotherapy (avelumab) in patients with advanced ICB-resistant melanoma. Experimental Design: A total of 20 participants with ICB-resistant metastatic melanoma received 2 × 4-week cycles of azacitidine and carboplatin followed by ICB rechallenge with anti-PD-L1 avelumab. The primary objective was overall response rate after priming and ICB rechallenge. Secondary objectives were clinical benefit rate (CBR), progression-free survival (PFS), and overall survival (OS). Translational correlation analysis of HLA-A and PD-L1 expression, RNA sequencing, and reduced representation bisulfite sequencing of biopsies at baseline, after priming and after six cycles of avelmuab was performed. Results: The overall response rate (ORR) determined after azacitidine and carboplatin priming was 10% (2/20) with two partial responses (PR). The ORR determined after priming followed by six cycles of avelumab (week 22) was 10%, with 2 of 20 participants achieving immune partial response (iPR). The CBR for azacitidine and carboplatin priming was 65% (13/20) and after priming followed by six cycles of avelumab CBR was 35% (n = 7/20). The median PFS was 18.0 weeks [95% confidence interval (CI): 14.87-21.13 weeks] and the median OS was 47.86 weeks (95% CI: 9.67-86.06 weeks). Translational correlation analysis confirmed HLA-A generally increased after priming with azacitidine and carboplatin, particularly if it was absent at the start of treatment. Average methylation of CpGs across the HLA-A locus was decreased after priming and T cells, in particular CD8+, showed the greatest increase in infiltration. Conclusions: Priming with azacitidine and carboplatin can induce disease stabilization and resensitization to ICB for metastatic melanoma. Significance: There are limited treatments for melanoma once resistance to ICB occurs. Chemotherapy induces immune-related responses and may be repurposed to reinstate the response to ICB. This study provides the first evidence that chemotherapy can provide clinical benefit and increase OS for ICB-resistant melanoma.


Asunto(s)
Azacitidina , Carboplatino , Reposicionamiento de Medicamentos , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Melanoma , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Azacitidina/administración & dosificación , Azacitidina/efectos adversos , Azacitidina/uso terapéutico , Biomarcadores , Carboplatino/administración & dosificación , Carboplatino/efectos adversos , Carboplatino/uso terapéutico , Daño del ADN/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Antígenos HLA-A , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Linfocitos T/metabolismo , Investigación Biomédica Traslacional
12.
Sci Adv ; 7(45): eabg4398, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34730999

RESUMEN

Multiple mutational signatures have been associated with DNA mismatch repair (MMR)­deficient cancers, but the mechanisms underlying their origin remain unclear. Here, using mutation data from cancer genomes, we identify a previously unknown function of MMR that is able to protect genomes from 5-methylcytosine (5mC) deamination­induced somatic mutations in a replication-independent manner. Cancers with deficiency of MMR proteins MSH2/MSH6 (MutSα) exhibit mutational signature contributions distinct from those that are deficient in MLH1/PMS2 (MutLα). This disparity arises from unrepaired 5mC deamination­induced mismatches rather than replicative DNA polymerase errors. In cancers with biallelic loss of MBD4 DNA glycosylase, repair of 5mC deamination damage is strongly associated with H3K36me3 chromatin, implicating MutSα as the essential factor in its repair. We thus uncover a noncanonical role of MMR in the protection against 5mC deamination­induced mutation in human cancers.

13.
Eur J Cancer ; 157: 94-107, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34492588

RESUMEN

AIM: High immune cell infiltration of the tumour microenvironment is generally associated with a good prognosis in solid cancers. However, a subset of patients with colorectal cancer (CRC) tumours with high immune cell infiltration have a poor outcome. These tumours have a high level of T cell infiltration and are also characterised by increased expression of programmed death-ligand 1 (PD-L1). As these tumours comprise both microsatellite instability and microsatellite stable subtypes, the mechanism underlying this phenotype is unknown. METHODS: Using RNA-seq data from The Cancer Genome Atlas, we quantified transposable element (TE) expression and developed a TE expression score that is predictive of prognosis and immune infiltration independent of microsatellite instability status and tumour staging in CRC. RESULTS: Tumours with the highest TE expression score showed increased immune cell infiltration with upregulation of interferon (IFN) signalling pathways and downstream activation of IFN-simulated genes. As expected, cell lines treated with DNA methyltransferase inhibitor mimicked patient tumours with increased TE expression and IFN signalling. However, surprisingly, unlike high TE expressing CRC, there is little evidence for the activation of JAK-STAT signalling and PD-L1 expression in DNA methyltransferase inhibitor-treated cells. Single-cell RNA-seq analysis of CRC samples showed that PD-L1 expression is mainly confined to tumour-associated macrophages and T cells, suggesting that TE mediated IFN signalling is triggering expression of PD-L1 in immune cells rather than in tumour cells. CONCLUSIONS: Our study uncovers a novel mechanism of TE driven immune evasion and highlights TE expression as an important factor for patient prognosis in CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Elementos Transponibles de ADN/fisiología , Escape del Tumor/inmunología , Antígeno B7-H1/fisiología , Línea Celular Tumoral , Metilación de ADN , Humanos , Inmunidad Innata , Factores de Transcripción STAT/fisiología
14.
Rev Endocr Metab Disord ; 22(4): 1121-1136, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34272645

RESUMEN

Developed as an antidiabetic drug, recent evidence suggests that several sodium-glucose co-transporter 2 inhibitors (SGLT2i), especially canagliflozin and dapagliflozin, may exhibit in vitro and in vivo anticancer activities in selected cancer types, including an inhibition of tumor growth and induction of cell death. When used in combination with chemotherapy or radiotherapy, SGLT2i may offer possible synergistic effects in enhancing their treatment efficacy while alleviating associated side effects. Potential mechanisms include a reduction of glucose uptake into cancer cells, systemic glucose restriction, modulation of multiple signaling pathways, and regulation of different gene and protein expression. Furthermore, preliminary clinical findings have reported potential anticancer properties of canagliflozin and dapagliflozin in patients with liver and colon cancers respectively, with reference to decreases in their tumor marker levels. Given its general tolerability and routine use in diabetes management, SGLT2i may be a good candidate for drug repurposing in cancer treatment and as adjunct to conventional therapies. While current evidence reveals that only certain SGLT2i appear to be effective against selected cancer types, further studies are needed to explore the antitumor abilities of each SGLT2i in various cancers. Moreover, clinical trials are called for to evaluate the safety and feasibility of introducing SGLT2i in the treatment regimen of patients with specific cancers, and to identify the preferred route of drug administration for targeted delivery to selected tumor sites.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neoplasias , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Simportadores , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Reposicionamiento de Medicamentos , Glucosa , Humanos , Neoplasias/tratamiento farmacológico , Sodio/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Simportadores/uso terapéutico
15.
Blood ; 138(16): 1441-1455, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34075404

RESUMEN

Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.


Asunto(s)
Factor de Transcripción GATA2/genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Células Eritroides/metabolismo , Células Eritroides/patología , Redes Reguladoras de Genes , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Regulador Transcripcional ERG/genética
16.
Expert Rev Proteomics ; 18(3): 221-232, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33877947

RESUMEN

Introduction: Cancer cell lines (CCLs) have been a major resource for cancer research. Over the past couple of decades, they have been instrumental in omic profiling method development and as model systems to generate new knowledge in cell and cancer biology. More recently, with the increasing amount of genomic, transcriptomic and proteomic data being generated in hundreds of CCLs, there is growing potential for integrative proteogenomic data analyses to be performed.Areas covered: In this review, we first describe the most commonly used proteome profiling methods in CCLs. We then discuss how these proteomics data can be integrated with genomics data for proteogenomics analyses. Finally, we highlight some of the recent biological discoveries that have arisen from proteogenomics analyses of CCLs.Expert opinion: Protegeonomics analyses of CCLs have so far enabled the discovery of novel proteins and proteoforms. It has also improved our understanding of biological processes including post-transcriptional regulation of protein abundance and the presentation of antigens by major histocompatibility complex alleles. With proteomics data to be generated in hundreds to thousands of CCLs in coming years, there will be further potential for large-scale proteogenomics analyses and data integration with the phenotypically well-characterized CCLs.


Asunto(s)
Neoplasias , Proteogenómica , Línea Celular , Genómica , Humanos , Neoplasias/genética , Proteómica
17.
Sci Adv ; 7(3)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523875

RESUMEN

Terminally differentiated murine osteocytes and adipocytes can be reprogrammed using platelet-derived growth factor-AB and 5-azacytidine into multipotent stem cells with stromal cell characteristics. We have now optimized culture conditions to reprogram human adipocytes into induced multipotent stem (iMS) cells and characterized their molecular and functional properties. Although the basal transcriptomes of adipocyte-derived iMS cells and adipose tissue-derived mesenchymal stem cells were similar, there were changes in histone modifications and CpG methylation at cis-regulatory regions consistent with an epigenetic landscape that was primed for tissue development and differentiation. In a non-specific tissue injury xenograft model, iMS cells contributed directly to muscle, bone, cartilage, and blood vessels, with no evidence of teratogenic potential. In a cardiotoxin muscle injury model, iMS cells contributed specifically to satellite cells and myofibers without ectopic tissue formation. Together, human adipocyte-derived iMS cells regenerate tissues in a context-dependent manner without ectopic or neoplastic growth.


Asunto(s)
Azacitidina , Factor de Crecimiento Derivado de Plaquetas , Adipocitos , Tejido Adiposo , Animales , Azacitidina/farmacología , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Células Madre Multipotentes , Músculos
18.
NPJ Precis Oncol ; 5(1): 7, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580207

RESUMEN

Studies have shown that tumor microenvironment (TME) might affect drug sensitivity and the classification of colorectal cancer (CRC). Using TME-specific gene signature to identify CRC subtypes with distinctive clinical relevance has not yet been tested. A total of 18 "bulk" RNA-seq datasets (total n = 2269) and four single-cell RNA-seq datasets were included in this study. We constructed a "Signature associated with FOLFIRI resistant and Microenvironment" (SFM) that could discriminate both TME and drug sensitivity. Further, SFM subtypes were identified using K-means clustering and verified in three independent cohorts. Nearest template prediction algorithm was used to predict drug response. TME estimation was performed by CIBERSORT and microenvironment cell populations-counter (MCP-counter) methods. We identified six SFM subtypes based on SFM signature that discriminated both TME and drug sensitivity. The SFM subtypes were associated with distinct clinicopathological, molecular and phenotypic characteristics, specific enrichments of gene signatures, signaling pathways, prognosis, gut microbiome patterns, and tumor lymphocytes infiltration. Among them, SFM-C and -F were immune suppressive. SFM-F had higher stromal fraction with epithelial-to-mesenchymal transition phenotype, while SFM-C was characterized as microsatellite instability phenotype which was responsive to immunotherapy. SFM-D, -E, and -F were sensitive to FOLFIRI and FOLFOX, while SFM-A, -B, and -C were responsive to EGFR inhibitors. Finally, SFM subtypes had strong prognostic value in which SFM-E and -F had worse survival than other subtypes. SFM subtypes enable the stratification of CRC with potential chemotherapy response thereby providing more precise therapeutic options for these patients.

19.
Br J Haematol ; 193(4): 841-844, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33481245

RESUMEN

Clonal haematopoiesis of indeterminant potential (CHIP) increases in frequency with age. The effect of CHIP on the mobilization of autologous CD34+ peripheral blood stem cells (PBSC) has not been reported. This study uses a DNA-based targeted candidate gene approach to identify the presence of somatic mutations in ASXL1, DNMT3A, JAK2, SF3B1, TET2 and TP53 in CD34+ haematopoietic progenitor cell-apheresis products of 96 patients who undergo PBSC mobilization for autologous stem cell transplantation (ASCT). Variants were identified in a significantly greater proportion of patients who experience poor CD34+ PBSC mobilization. A DNA-based targeted candidate gene array is able to predict poor CD34+ PBSC mobilization and may be deployed pre-emptively to minimize mobilization and graft failures.


Asunto(s)
Hematopoyesis Clonal/genética , Movilización de Célula Madre Hematopoyética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Trasplante de Células Madre de Sangre Periférica , Células Madre de Sangre Periférica , Adulto , Factores de Edad , Anciano , Autoinjertos , Femenino , Humanos , Masculino , Persona de Mediana Edad
20.
Gut ; 69(12): 2165-2179, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32217638

RESUMEN

OBJECTIVE: Sporadic early-onset colorectal cancer (EOCRC) has bad prognosis, yet is poorly represented by cell line models. We examine the key mutational and transcriptomic alterations in an organoid biobank enriched in EOCRCs. DESIGN: We established paired cancer (n=32) and normal organoids (n=18) from 20 patients enriched in microsatellite-stable EOCRC. Exome and transcriptome analysis was performed. RESULTS: We observed a striking diversity of molecular phenotypes, including PTPRK-RSPO3 fusions. Transcriptionally, RSPO fusion organoids resembled normal colon organoids and were distinct from APC mutant organoids, with high BMP2 and low PTK7 expression. Single cell transcriptome analysis confirmed the similarity between RSPO fusion organoids and normal organoids, with a propensity for maturation on Wnt withdrawal, whereas the APC mutant organoids were locked in progenitor stages. CRISPR/Cas9 engineered mutation of APC in normal human colon organoids led to upregulation of PTK7 protein and suppression of BMP2, but less so with an engineered RNF43 mutation. The frequent co-occurrence of RSPO fusions with SMAD4 or BMPR1A mutation was confirmed in TCGA database searches. RNF43 mutation was found in organoid from a leukaemia survivor with a novel mutational signature; and organoids with POLE proofreading mutation displayed ultramutation. The cancer organoid genomes were stable over long culture periods, while normal human colon organoids tended to be subject to clonal dominance over time. CONCLUSIONS: These organoid models enriched in EOCRCs with linked genomic data fill a gap in existing CRC models and reveal distinct genetic profiles and novel pathway cooperativity.


Asunto(s)
Neoplasias Colorrectales/genética , Perfil Genético , Organoides/patología , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína Morfogenética Ósea 2/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Sistemas CRISPR-Cas , Moléculas de Adhesión Celular/genética , Perfilación de la Expresión Génica , Fusión Génica , Humanos , Modelos Genéticos , Mutación , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteína Smad4/genética , Trombospondinas/genética , Bancos de Tejidos , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...