Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 153(1): 182-192.e7, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748654

RESUMEN

BACKGROUND: Despite their central role in peanut allergy, human monoclonal IgE antibodies have eluded characterization. OBJECTIVE: We sought to define the sequences, affinities, clonality, and functional properties of human monoclonal IgE antibodies in peanut allergy. METHODS: We applied our single-cell RNA sequencing-based SEQ SIFTER discovery platform to samples from allergic individuals who varied by age, sex, ethnicity, and geographic location in order to understand commonalities in the human IgE response to peanut allergens. Select antibodies were then recombinantly expressed and characterized for their allergen and epitope specificity, affinity, and functional properties. RESULTS: We found striking convergent evolution of IgE monoclonal antibodies (mAbs) from several clonal families comprising both memory B cells and plasmablasts. These antibodies bound with subnanomolar affinity to the immunodominant peanut allergen Ara h 2, specifically a linear, repetitive motif. Further characterization of these mAbs revealed their ability to single-handedly cause affinity-dependent degranulation of human mast cells and systemic anaphylaxis on peanut allergen challenge in humanized mice. Finally, we demonstrated that these mAbs, reengineered as IgGs, inhibit significant, but variable, amounts of Ara h 2- and peanut-mediated degranulation of mast cells sensitized with allergic plasma. CONCLUSIONS: Convergent evolution of IgE mAbs in peanut allergy is a common phenomenon that can reveal immunodominant epitopes on major allergenic proteins. Understanding the functional properties of these molecules is key to developing therapeutics, such as competitive IgG inhibitors, that are able to stoichiometrically outcompete endogenous IgE for allergen and thereby prevent allergic cascade in cases of accidental allergen exposure.


Asunto(s)
Hipersensibilidad al Cacahuete , Humanos , Animales , Ratones , Epítopos Inmunodominantes , Antígenos de Plantas , Glicoproteínas , Inmunoglobulina E , Epítopos , Anticuerpos Monoclonales , Alérgenos , Arachis , Albuminas 2S de Plantas
2.
Nat Commun ; 8(1): 781, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974687

RESUMEN

Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.


Asunto(s)
Efrina-B2/metabolismo , Virus Nipah/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Regulación Alostérica , Anticuerpos Monoclonales/metabolismo , Medición de Intercambio de Deuterio , Células HEK293 , Humanos , Espectrometría de Masas , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Coloración Negativa , Unión Proteica , Multimerización de Proteína
3.
Proc Natl Acad Sci U S A ; 113(4): 1056-61, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26712026

RESUMEN

Hendra virus (HeV) is one of the two prototypical members of the Henipavirus genus of paramyxoviruses, which are designated biosafety level 4 (BSL-4) organisms due to the high mortality rate of Nipah virus (NiV) and HeV in humans. Paramyxovirus cell entry is mediated by the fusion protein, F, in response to binding of a host receptor by the attachment protein. During posttranslational processing, the fusion peptide of F is released and, upon receptor-induced triggering, inserts into the host cell membrane. As F undergoes a dramatic refolding from its prefusion to postfusion conformation, the fusion peptide brings the host and viral membranes together, allowing entry of the viral RNA. Here, we present the crystal structure of the prefusion form of the HeV F ectodomain. The structure shows very high similarity to the structure of prefusion parainfluenza virus 5 (PIV5) F, with the main structural differences in the membrane distal apical loops and the fusion peptide cleavage loop. Functional assays of mutants show that the apical loop can tolerate perturbation in length and surface residues without loss of function, except for residues involved in the stability and conservation of the F protein fold. Structure-based disulfide mutants were designed to anchor the fusion peptide to conformationally invariant residues of the F head. Two mutants were identified that inhibit F-mediated fusion by stabilizing F in its prefusion conformation.


Asunto(s)
Virus Hendra/química , Proteínas Virales de Fusión/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Disulfuros/química , Células HEK293 , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Estabilidad Proteica
4.
J Mol Biol ; 426(22): 3783-3795, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25284757

RESUMEN

The conjugative transfer of bacterial F plasmids relies on TraM, a plasmid-encoded protein that recognizes multiple DNA sites to recruit the plasmid to the conjugative pore. In spite of the high degree of amino acid sequence conservation between TraM proteins, many of these proteins have markedly different DNA binding specificities that ensure the selective recruitment of a plasmid to its cognate pore. Here we present the structure of F TraM RHH (ribbon-helix-helix) domain bound to its sbmA site. The structure indicates that a pair of TraM tetramers cooperatively binds an underwound sbmA site containing 12 base pairs per turn. The sbmA is composed of 4 copies of a 5-base-pair motif, each of which is recognized by an RHH domain. The structure reveals that a single conservative amino acid difference in the RHH ß-ribbon between F and pED208 TraM changes its specificity for its cognate 5-base-pair sequence motif. Specificity is also dictated by the positioning of 2-base-pair spacer elements within sbmA; in F sbmA, the spacers are positioned between motifs 1 and 2 and between motifs 3 and 4, whereas in pED208 sbmA, there is a single spacer between motifs 2 and 3. We also demonstrate that a pair of F TraM tetramers can cooperatively bind its sbmC site with an affinity similar to that of sbmA in spite of a lack of sequence similarity between these DNA elements. These results provide a basis for the prediction of the DNA binding properties of the family of TraM proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factor F/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Factor F/química , Factor F/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
5.
Mol Microbiol ; 85(4): 602-17, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22788760

RESUMEN

The tra operon of the prototypical F plasmid and its relatives enables transfer of a copy of the plasmid to other bacterial cells via the process of conjugation. Tra proteins assemble to form the transferosome, the transmembrane pore through which the DNA is transferred, and the relaxosome, a complex of DNA-binding proteins at the origin of DNA transfer. F-like plasmid conjugation is characterized by a high degree of plasmid specificity in the interactions of tra components, and is tightly regulated at the transcriptional, translational and post-translational levels. Over the past decade, X-ray crystallography of conjugative components has yielded insights into both specificity and regulatory mechanisms. Conjugation is repressed by FinO, an RNA chaperone which increases the lifetime of the small RNA, FinP. Recent work has resulted in a detailed model of FinO/FinP interactions and the discovery of a family of FinO-like RNA chaperones. Relaxosome components include TraI, a relaxase/helicase, and TraM, which mediates signalling between the transferosome and relaxosome for transfer initiation. The structures of TraI and TraM bound to oriT DNA reveal the basis of specific recognition of DNA for their cognate plasmid. Specificity also exists in TraI and TraM interactions with the transferosome protein TraD.


Asunto(s)
Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Conjugación Genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor F , Bacterias/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Unión Proteica , Conformación Proteica
6.
Nucleic Acids Res ; 39(15): 6775-88, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21565799

RESUMEN

The conjugative transfer of F-like plasmids such as F, R1, R100 and pED208, between bacterial cells requires TraM, a plasmid-encoded DNA-binding protein. TraM tetramers bridge the origin of transfer (oriT) to a key component of the conjugative pore, the coupling protein TraD. Here we show that TraM recognizes a high-affinity DNA-binding site, sbmA, as a cooperative dimer of tetramers. The crystal structure of the TraM-sbmA complex from the plasmid pED208 shows that binding cooperativity is mediated by DNA kinking and unwinding, without any direct contact between tetramers. Sequence-specific DNA recognition is carried out by TraM's N-terminal ribbon-helix-helix (RHH) domains, which bind DNA in a staggered arrangement. We demonstrate that both DNA-binding specificity, as well as selective interactions between TraM and the C-terminal tail of its cognate TraD mediate conjugation specificity within the F-like family of plasmids. The ability of TraM to cooperatively bind DNA without interaction between tetramers leaves the C-terminal TraM tetramerization domains free to make multiple interactions with TraD, driving recruitment of the plasmid to the conjugative pore.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/química , Proteínas de Unión al ADN/química , Alelos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor F/genética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína
7.
Mol Microbiol ; 70(1): 89-99, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18717787

RESUMEN

F plasmid-mediated bacterial conjugation requires interactions between a relaxosome component, TraM, and the coupling protein TraD, a hexameric ring ATPase that forms the cytoplasmic face of the conjugative pore. Here we present the crystal structure of the C-terminal tail of TraD bound to the TraM tetramerization domain, the first structural evidence of relaxosome-coupling protein interactions. The structure reveals the TraD C-terminal peptide bound to each of four symmetry-related grooves on the surface of the TraM tetramer. Extensive protein-protein interactions were observed between the two proteins. Mutational analysis indicates that these interactions are specific and required for efficient F conjugation in vivo. Our results suggest that specific interactions between the C-terminal tail of TraD and the TraM tetramerization domain might lead to more generalized interactions that stabilize the relaxosome-coupling protein complex in preparation for conjugative DNA transfer.


Asunto(s)
Proteínas Bacterianas/genética , Conjugación Genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Factor F/genética , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , ADN Bacteriano/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia
8.
EMBO J ; 25(12): 2930-9, 2006 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-16710295

RESUMEN

TraM is essential for F plasmid-mediated bacterial conjugation, where it binds to the plasmid DNA near the origin of transfer, and recognizes a component of the transmembrane DNA transfer complex, TraD. Here we report the 1.40 A crystal structure of the TraM core tetramer (TraM58-127). TraM58-127 is a compact eight-helical bundle, in which the N-terminal helices from each protomer interact to form a central, parallel four-stranded coiled-coil, whereas each C-terminal helix packs in an antiparallel arrangement around the outside of the structure. Four protonated glutamic acid residues (Glu88) are packed in a hydrogen-bonded arrangement within the central four-helix bundle. Mutational and biophysical analyses indicate that this protonated state is in equilibrium with a deprotonated tetrameric form characterized by a lower helical content at physiological pH and temperature. Comparison of TraM to its Glu88 mutants predicted to stabilize the helical structure suggests that the protonated state is the active form for binding TraD in conjugation.


Asunto(s)
Proteínas Bacterianas/química , Conjugación Genética , Protones , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cromatografía en Gel , Dicroismo Circular , Cristalografía por Rayos X , Escherichia coli/química , Ácido Glutámico/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Docilidad , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...