Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 454: 139797, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38797099

RESUMEN

This study investigated antioxidant and anti-inflammatory peptides from Edible Bird's Nest (EBN). The prepared EBN peptides were sequentially separated, purified, and successively identified by ultrafiltration, gel filtration and mass spectrometry techniques. Four potential antioxidant and anti-inflammatory peptides were identified as Peptide 1 (LFWSPSVYLK), Peptide 2 (GWPHLEDNYLDW), Peptide 3 (NPPADLHK) and Peptide 4 (GDLAYLDQGHR). Molecular docking analysis revealed that Peptide 1 and Peptide 2 can competitively interrupt the formation of Keap1-Nrf2 due to the presence of hydrophobic and antioxidant amino acids in their peptide sequences. Peptide 3 and Peptide 4 have a strong effect on interacting with the binding site of IKK-ß due to the interaction of anti-inflammatory amino acids and C-terminal arginine/lysine. The four peptides were synthesised and validated for their antioxidant and anti-inflammatory activities. The results suggest that the four peptides may serve as promising bioactive peptides for preventing oxidative stress and inflammation-related diseases.

2.
Environ Pollut ; 349: 123985, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621450

RESUMEN

Microplastics pose a significant environmental threat, with potential implications for toxic chemical release, aquatic life endangerment, and human food chain contamination. In Asia, rapid economic growth coupled with inadequate waste management has escalated plastic pollution in rivers, positioning them as focal points for environmental concern. Despite Asia's rivers being considered the most polluted with plastics globally, scholarly attention to microplastics in the region's freshwater environments is a recent development. This study undertakes a systematic review of 228 scholarly articles to map microplastic hotspots in Asian freshwater systems and synthesize current research trends within the continent. Findings reveal a concentration of research in China and Japan, primarily investigating riverine and surface waters through net-based sampling methods. Polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) emerge as the predominant microplastic types, frequently observed as fibers or fragments. However, the diversity of sampling methodologies and reporting metrics complicates data synthesis, underscoring the need for standardized analytical frameworks to facilitate comparative analysis. This paper delineates the distribution of microplastic hotspots and outlines the prevailing challenges and prospects in microplastic research within Asian freshwater contexts.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Ríos , Contaminantes Químicos del Agua , Microplásticos/análisis , Ríos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Asia , China , Japón , Plásticos/análisis
3.
Environ Res ; 252(Pt 2): 118928, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636646

RESUMEN

Microplastics (MPs), as emerging indoor contaminants, have garnered attention due to their ubiquity and unresolved implications for human health. These tiny particles have permeated indoor air and water, leading to inevitable human exposure. Preliminary evidence suggests MP exposure could be linked to respiratory, gastrointestinal, and potentially other health issues, yet the full scope of their effects remains unclear. To map the overall landscape of this research field, a bibliometric analysis based on research articles retrieved from the Web of Science database was conducted. The study synthesizes the current state of knowledge and spotlights the innovative mitigation strategies proposed to curb indoor MP pollution. These strategies involve minimizing the MP emission from source, advancements in filtration technology, aimed at reducing the MP exposure. Furthermore, this research sheds light on cutting-edge methods for converting MP waste into value-added products. These innovative approaches not only promise to alleviate environmental burdens but also contribute to a more sustainable and circular economy by transforming waste into resources such as biofuels, construction materials, and batteries. Despite these strides, this study acknowledges the ongoing challenges, including the need for more efficient removal technologies and a deeper understanding of MPs' health impacts. Looking forward, the study underscores the necessity for further research to fill these knowledge gaps, particularly in the areas of long-term health outcomes and the development of standardized, reliable methodologies for MP detection and quantification in indoor settings. This comprehensive approach paves the way for future exploration and the development of robust solutions to the complex issue of microplastic pollution.


Asunto(s)
Contaminación del Aire Interior , Bibliometría , Microplásticos , Microplásticos/análisis , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Humanos , Monitoreo del Ambiente/métodos
4.
J Environ Manage ; 356: 120644, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522274

RESUMEN

Plastics are a wide range of synthetic or semi-synthetic materials, mainly consisting of polymers. The use of plastics has increased to over 300 million metric tonnes in recent years, and by 2050, it is expected to grow to 800 million. Presently, a mere 10% of plastic waste is recycled, with approximately 75% ended up in landfills. Inappropriate disposal of plastic waste into the environment poses a threat to human lives and marine species. Therefore, this review article highlights potential routes for converting plastic/microplastic waste into valuable resources to promote a greener and more sustainable environment. The literature review revealed that plastics/microplastics (P/MP) could be recycled or upcycled into various products or materials via several innovative processes. For example, P/MP are recycled and utilized as anodes in lithium-ion (Li-ion) and sodium-ion (Na-ion) batteries. The anode in Na-ion batteries comprising PP carbon powder exhibits a high reversible capacity of ∼340 mAh/g at 0.01 A/g current state. In contrast, integrating Fe3O4 and PE into a Li-ion battery yielded an excellent capacity of 1123 mAh/g at 0.5 A/g current state. Additionally, recycled Nylon displayed high physical and mechanical properties necessary for excellent application as 3D printing material. Induction heating is considered a revolutionary pyrolysis technique with improved yield, efficiency, and lower energy utilization. Overall, P/MPs are highlighted as abundant resources for the sustainable production of valuable products and materials such as batteries, nanomaterials, graphene, and membranes for future applications.


Asunto(s)
Microplásticos , Plásticos , Humanos , Reciclaje , Instalaciones de Eliminación de Residuos
5.
Environ Sci Pollut Res Int ; 31(1): 109-126, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040882

RESUMEN

This paper presents the landscape of research on airborne microplastics and nanoplastics (MPs/NPs) according to the bibliometric analysis of 147 documents issued between 2015 and 2021, extracted from the Web of Science database. The publications on airborne MPs/NPs have increased rapidly from 2015 onwards, which is largely due to the existence of funding support. Science of the Total Environment is one of the prominent journals in publishing related papers. China, England, the USA, and European Countries have produced a significant output of airborne MP/NP research works, which is associated with the availability of funding agencies regionally or nationally. The research hotspot on the topic ranges from the transport of airborne MPs/NPs to their deposition in the terrestrial or aquatic environments, along with the contamination of samples by indoor MPs/NPs. Most of the publications are either research or review papers related to MPs/NPs. It is crucial to share the understanding of global plastic pollution and its unfavorable effects on humankind by promoting awareness of the existence and impact of MPs/NPs. Funding agencies are vital in boosting the research development of airborne MPs/NPs. Some countries that are lacking funding support were able to publish research findings related to the field of interest, however, with lesser research output. Without sufficient fundings, some impactful publications may not be able to carry a substantial impact in sharing the findings and discoveries with the mass public.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Bibliometría , China , Bases de Datos Factuales
6.
Environ Res ; 245: 118055, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154562

RESUMEN

Airborne Microplastics (MPs), an emerging environmental issue, have gained recent attention due to their newfound presence in indoor environments. Utilizing the Web of Science database for literature collection, the paper presents a comprehensive review of airborne MPs including emission sources, assessment methods, exposure risks, and mitigation strategies. This review delves into the diverse sources and mechanisms influencing indoor airborne MP pollution, underscoring the complex interplay between human activities, ventilation systems, and the characteristics of indoor environments. Major sources include the abrasion of synthetic textiles and the deterioration of flooring materials, with factors like carpeting, airflow, and ventilation significantly impacting MP levels. Human activities, such as increased movement in indoor spaces and the intensive use of plastic-based personal protective equipment (PPE) post-pandemic, notably elevate indoor MP concentrations. The potential health impacts of airborne MPs are increasingly concerning, with evidence suggesting their role in respiratory, immune, and nervous system diseases. Despite this, there is a scarcity of information on MPs in diverse indoor environments and the inhalation risks associated with the frequent use of PPE. This review also stresses the importance of developing effective strategies to reduce MP emissions, such as employing HEPA-filtered vacuums, minimizing the use of synthetic textiles, and enhancing indoor ventilation. Several future research directions were proposed, including detailed temporal analyses of indoor MP levels, interactions of MP with other atmospheric pollutants, the transport dynamics of inhalable MPs (≤10 µm), and comprehensive human exposure risk assessments.


Asunto(s)
Contaminación del Aire Interior , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire Interior/análisis , Contaminación Ambiental/análisis , Contaminantes Químicos del Agua/análisis
7.
Environ Sci Pollut Res Int ; 30(58): 121253-121268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979109

RESUMEN

Understanding particle dispersion characteristics in indoor environments is crucial for revising infection prevention guidelines through optimized engineering control. The secondary wake flow induced by human movements can disrupt the local airflow field, which enhances particle dispersion within indoor spaces. Over the years, researchers have explored the impact of human movement on indoor air quality (IAQ) and identified noteworthy findings. However, there is a lack of a comprehensive review that systematically synthesizes and summarizes the research in this field. This paper aims to fill that gap by providing an overview of the topic and shedding light on emerging areas. Through a systematic review of relevant articles from the Web of Science database, the study findings reveal an emerging trend and current research gaps on the topic titled Impact of Human Movement in Indoor Airflow (HMIA). As an overview, this paper explores the effect of human movement on human microenvironments and particle resuspension in indoor environments. It delves into the currently available methods for assessing the HMIA and proposes the integration of IoT sensors for potential indoor airflow monitoring. The present study also emphasizes incorporating human movement into ventilation studies to achieve more realistic predictions and yield more practical measures. This review advances knowledge and holds significant implications for scientific and public communities. It identifies future research directions and facilitates the development of effective ventilation strategies to enhance indoor environments and safeguard public health.


Asunto(s)
Contaminación del Aire Interior , Humanos , Contaminación del Aire Interior/prevención & control , Ventilación , Respiración
8.
Environ Sci Pollut Res Int ; 30(45): 101223-101233, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648923

RESUMEN

In light of the adverse environmental impact of the R134a refrigerant, replacing it with a more environmentally friendly refrigerant has become imperative than ever. This study presents an experimental investigation into the utilization of R152a and R134a refrigerants in a vapor compression refrigeration system employing a variable displacement oil-free linear compressor. The potential for the replacement of R134a with R152a was examined based on energy, environmental, and economic performance analyses. The outcomes indicated that R152a exhibited a higher coefficient of performance (COP) in comparison to R134a under identical operating conditions. Specifically, when the pressure ratio was 2.0 and the piston stroke was 11 mm, R152a's COP was 13.0% higher than R134a. It was also discovered that reducing the operating stroke and increasing the pressure ratio could effectively lower CO2 emissions and total costs. Under the 2.0 pressure ratio and 9-mm piston stroke, R134a produced 1082.4 kg more CO2 emissions than R152a, representing a 209% increase. In addition, the R152a and R134a total cost was reduced by 8.3% with the 2.5 pressure ratio and 11-mm piston stroke. Notably, the results of the current study demonstrated that R152a outperformed R134a in energy consumption, environmental friendliness, and economy in oil-free linear compressor refrigeration systems. R152a used less electric power, generated fewer CO2 emissions, and naturally reduced predicted running costs in order to maintain the same COP.

9.
Environ Sci Pollut Res Int ; 29(53): 80137-80160, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36194323

RESUMEN

An indoor environment in a hospital building requires a high indoor air quality (IAQ) to overcome patients' risks of getting wound infections without interrupting the recovery process. However, several problems arose in obtaining a satisfactory IAQ, such as poor ventilation design strategies, insufficient air exchange, improper medical equipment placement and high door opening frequency. This paper presents an overview of various methods used for assessing the IAQ in hospital facilities, especially in an operating room, isolation room, anteroom, postoperative room, inpatient room and dentistry room. This review shows that both experimental and numerical methods demonstrated their advantages in the IAQ assessment. It was revealed that both airflow and particle tracking models could result in different particle dispersion predictions. The model selection should depend on the compatibility of the simulated result with the experimental measurement data. The primary and secondary forces affecting the characteristics of particle dispersion were also discussed in detail. The main contributing forces to the trajectory characteristics of a particle could be attributed to the gravitational force and drag force regardless of particle size. Meanwhile, the additional forces could be considered when there involves temperature gradient, intense light source, submicron particle, etc. The particle size concerned in a healthcare facility should be less than 20 µm as this particle size range showed a closer relationship with the virus load and a higher tendency to remain airborne. Also, further research opportunities that reflect a more realistic approach and improvement in the current assessment approach were proposed.


Asunto(s)
Contaminación del Aire Interior , Ventilación , Humanos , Movimientos del Aire , Ventilación/métodos , Contaminación del Aire Interior/análisis , Tamaño de la Partícula , Atención a la Salud
10.
Environ Sci Pollut Res Int ; 29(54): 82492-82511, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35751730

RESUMEN

The present study examines the effect of medical staff's turning movements on particle concentration in the surgical zone and settlement on the patient under single large diffuser (SLD) ventilation. A computational domain representing the operating room (OR) was constructed using computer-aided design (CAD) software. The airflow and particle models were validated against the published data before conducting the case studies. The airflow in the OR was simulated using an RNG k-ε turbulence model, while the dispersion of the particles was simulated using a discrete phase model based on the Lagrangian approach. A user-defined function (UDF) code was written and compiled in the simulation software to describe the medical staff member's turning movements. In this study, three cases were examined: baseline, SLD 1, and SLD 2, with the air supply areas of 4.3 m2, 5.7 m2, and 15.9 m2, respectively. Results show that SLD ventilations in an OR can reduce the number of dispersed particles in the surgical zone. The particles that settled on the patient were reduced by 41% and 39% when using the SLD 1 and SLD 2 ventilations, respectively. The use of the larger air supply area of SLD 2 ventilation in the present study does not significantly reduce the particles that settle on a patient. Likewise, the use of SLD 2 ventilation may increase operating and maintenance costs.


Asunto(s)
Contaminación del Aire Interior , Ventilación , Humanos , Ventilación/métodos , Quirófanos , Simulación por Computador , Cuerpo Médico , Contaminación del Aire Interior/análisis , Movimientos del Aire , Microbiología del Aire
11.
Membranes (Basel) ; 12(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35207032

RESUMEN

The addition of antibacterial material to hollow fiber membranes improves the membrane anti-biofouling characteristics. Antibacterial membranes were fabricated in this study to improve membrane function while also extending membrane lifetime. Neat polyvinylidene difluoride (PVDF) and PVDF hollow fiber membrane with the incorporation of antibacterial agent zinc oxide (ZnO) nanoparticles with various loading (2.5-7.5 wt.%) were fabricated by using dry/wet spinning method. The membrane structure, particle distribution, functional group, hydrophilicity, and pore size of each membrane were all assessed. The result shows that all ZnO/PVDF hollow fiber membranes have the asymmetric structure with even dispersion of ZnO nanoparticles throughout the membranes. The results showed that increased ZnO loadings considerably improved membrane hydrophilicity, and average pore size, in addition to good performance of pure water flux. Antibacterial testing shows that ZnO incorporated in the membrane matrix and membrane surfaces prevents bacteria that cause biofouling from adhering to the membrane. ZnO/PVDF membrane recorded excellent bovine serum albumin (BSA) rejection at 93.4% ± 0.4 with flux recovery rate at 70.9% ± 2.1. These results suggest that antibacterial ZnO/PVDF hollow fiber membranes are promising in relation to reducing biofouling for various water and wastewater treatment.

12.
Environ Sci Pollut Res Int ; 29(5): 6710-6721, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34458973

RESUMEN

In this study, a systematic procedure for establishing the relationship between particulate matter (PM) and microbial counts in four operating rooms (ORs) was developed. The ORs are located in a private hospital on the western coast of Peninsular Malaysia. The objective of developing the systematic procedure is to ensure that the correlation between the PMs and microbial counts are valid. Each of the procedures is conducted based on the ISO, IEST, and NEBB standards. The procedures involved verifying the operating parameters are air change rate, room differential pressure, relative humidity, and air temperature. Upon verifying that the OR parameters are in the recommended operating range, the measurements of the PMs and sampling of the microbes were conducted. The TSI 9510-02 particle counter was used to measure three different sizes of PMs: PM 0.5, PM 5, and PM 10. The MAS-100ECO air sampler was used to quantify the microbial counts. The present study confirms that PM 0.5 does not have an apparent positive correlation with the microbial count. However, the evident correlation of 7% and 15% were identified for both PM 5 and PM 10, respectively. Therefore, it is suggested that frequent monitoring of both PM 5 and PM 10 should be practised in an OR before each surgical procedure. This correlation approach could provide an instantaneous estimation of the microbial counts present in the OR.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Microbiología del Aire , Monitoreo del Ambiente , Hospitales , Quirófanos , Tamaño de la Partícula , Material Particulado/análisis , Temperatura
13.
Environ Sci Pollut Res Int ; 28(11): 13842-13860, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33196996

RESUMEN

The anthropogenic emission of carbon dioxide (CO2) into the atmosphere is recognized as the main contributor to global climate change. To date, scientists have developed various strategies, including CO2 utilization technologies, to reduce global carbon emissions. This paper presents the global scientific landscape of the CO2 utilization research from 1995 to 2019 based on a bibliometric analysis of 1875 publications extracted from Web of Science. The findings indicate a major increase in the number of publications and citations received from 2015 to 2019, denoting a fast-emerging research trend. The dynamics of global CO2 utilization research is partly driven by China's policies and research funding to promote low-carbon economic development. Applied Energy is recognized as a core journal in this research topic. The utilization of CO2 is a multidisciplinary topic that has progressed by multidimensional collaborations at the country and organizations levels, while the formation of co-authorship networks at the individual level is mostly influenced by the authors' affiliations. Keyword co-occurrence analysis reveals a rapid evolution in the CO2 utilization strategies from chemical fixation in carbonates and epoxides to pilot-scale testing of power-to-gas technologies in Europe and the USA. The development of efficient power-to-fuel technologies and biological utilization routes (using microalgae and bacteria) will probably be the next research priorities in CO2 utilization research.


Asunto(s)
Atmósfera , Dióxido de Carbono , Bibliometría , Dióxido de Carbono/análisis , Cambio Climático , Europa (Continente)
14.
Mar Pollut Bull ; 158: 111432, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32753215

RESUMEN

This paper presents the research landscape on microplastics and nanoplastics (M/NPs) in global food webs based on a bibliometric analysis of 330 publications published in 2009-2019 extracted from Web of Science. The publications increased tremendously since 2013. Marine Pollution Bulletin is one of the top productive journals for this topic. The publication landscape related to M/NPs in global food webs, as interdisciplinary research, is highly dependent on the funding availability. The high productivities of England, China, USA and European countries are attributed to the funding from the agencies at regional or national levels. Keyword analysis reveals the shift of research hotspots from investigations on M/NPs absorbed by various organisms in the ecosystems to studies on the trophic transfer of M/NPs and sorbed contaminants in the food webs and their associated adverse impacts. Funding agencies play important roles in leading the future development of this topic.


Asunto(s)
Cadena Alimentaria , Plásticos , Bibliometría , China , Ecosistema , Inglaterra , Europa (Continente) , Microplásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...