Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(11): 111102, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32975981

RESUMEN

Extremely light bosonic wave dark matter (ψDM) is an emerging dark matter candidate contesting the conventional cold dark matter paradigm and a model subject to intense scrutiny of late. This work for the first time reports testable salient features pertinent to gravitational lenses of ψDM halos. ψDM halos are distinctly filled with large-amplitude, small-scale density fluctuations with δρ/ρ_{halo}∼1 in form of density granules. This halo yields ubiquitous flux ratio anomalies of a few tens of percent, as is typically found for lensed quasars, and may also produce rare hexad and octad images for sources located in well-defined caustic zones. We have found new critical features appearing in the highly demagnified lens center when the halo has sufficiently high surface density near a very compact massive core.

2.
Phys Rev Lett ; 113(26): 261302, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25615301

RESUMEN

We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22) eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60 pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA