Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsyst Nanoeng ; 8: 37, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450326

RESUMEN

Origami has become an optimal methodological choice for creating complex three-dimensional (3D) structures and soft robots. The simple and low-cost origami-inspired folding assembly provides a new method for developing 3D soft robots, which is ideal for future intelligent robotic systems. Here, we present a series of materials, structural designs, and fabrication methods for developing independent, electrically controlled origami 3D soft robots for walking and soft manipulators. The 3D soft robots are based on soft actuators, which are multilayer structures with a dielectric elastomer (DE) film as the deformation layer and a laser-cut PET film as the supporting flexible frame. The triangular and rectangular design of the soft actuators allows them to be easily assembled into crawling soft robots and pyramidal- and square-shaped 3D structures. The crawling robot exhibits very stable crawling behaviors and can carry loads while walking. Inspired by origami folding, the pyramidal and square-shaped 3D soft robots exhibit programmable out-of-plane deformations and easy switching between two-dimensional (2D) and 3D structures. The electrically controllable origami deformation allows the 3D soft robots to be used as soft manipulators for grasping and precisely locking 3D objects. This work proves that origami-inspired fold-based assembly of DE actuators is a good reference for the development of soft actuators and future intelligent multifunctional soft robots.

2.
Sci Adv ; 8(2): eabl6700, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35030019

RESUMEN

The coronavirus pandemic has highlighted the importance of developing intelligent robotics to prevent infectious disease spread. Human-machine interfaces (HMIs) give a chance of interactions between users and robotics, which play a significant role in teleoperating robotics. Conventional HMIs are based on bulky, rigid, and expensive machines, which mainly focus on robots/machines control, but lack of adequate feedbacks to users, which limit their applications in conducting complicated tasks. Therefore, developing closed-loop HMIs with both accurate sensing and feedback functions is extremely important. Here, we present a closed-loop HMI system based on skin-integrated electronics, whose electronics compliantly interface with the whole body for wireless motion capturing and haptic feedback via Bluetooth, Wireless Fidelity (Wi-Fi), and Internet. The integration of visual and haptic VR via skin-integrated electronics together into a closed-loop HMI for robotic VR demonstrates great potentials in noncontact collection of bio samples, nursing infectious disease patients and many others.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...