Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35987338

RESUMEN

African lungfishes are obligatory air-breathers with exceptionally high environmental ammonia tolerance. They can lower the pH of the external medium during exposure to ammonia-loading conditions. This study aimed to demonstrate the possible involvement of branchial vacuolar-type H+-ATPase (Vha) in the ammonia-induced acidification of the external medium by the West African lungfish, Protopterus annectens, and to examine whether its capacity to acidify the medium could be augmented after exposure to 100 mmol l-1 NH4Cl for six days. Two full coding cDNA sequences of Vha subunit B (atp6v1b), atp6v1b1 and atp6v1b2, were obtained from the internal gills of P. annectens. The sequence of atp6v1b1 comprised 1548 bp, encoding 515 amino acids (57.4 kDa), while that of atp6v1b2 comprised 1536 bp, encoding 511 amino acids (56.6 kDa). Using a custom-made antibody reactive to both isoforms, immunofluorescence microscopy revealed the collective localization of Atp6v1b (atp6v1b1 and atp6v1b2) at the apical or the basolateral membrane of two different types of branchial Na+/K+-ATPase-immunoreactive ionocyte. The ionocytes labelled apically with Atp6v1b presumably expressed Atp6v1b1 containing a PDZ-binding domain, indicating that the apical Vha was positioned to transport H+ to the external medium. The expression of Atp6v1b was regulated post-transcriptionally, as the protein abundance of Atp6v1b and Vha activity increased significantly in the gills of fish exposed to 100 mmol l-1 NH4Cl for six days. Correspondingly, the fish exposed to ammonia had a greater capacity to acidify the external medium, presumably to decrease the ratio of [NH3] to [NH4+] in order to reduce the influx of exogenous NH3.


Asunto(s)
Amoníaco , ATPasas de Translocación de Protón Vacuolares , Aminoácidos/metabolismo , Amoníaco/metabolismo , Animales , Peces/fisiología , Branquias/metabolismo , Concentración de Iones de Hidrógeno , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-33011226

RESUMEN

The fluted giant clam, Tridacna squamosa, can perform light-enhanced shell formation, aided by its symbiotic dinoflagellates (Symbiodinium, Cladocopium, Durusdinium), which are able to donate organic nutrients to the host. During light-enhanced shell formation, increased Ca2+ transport from the hemolymph through the shell-facing epithelium of the inner mantle to the extrapallial fluid, where calcification occurs, is necessary. Additionally, there must be increased absorption of exogenous Ca2+ from the surrounding seawater, across the epithelial cells of the ctenidium (gill) into the hemolymph, to supply sufficient Ca2+ for light-enhanced shell formation. When Ca2+ moves across these epithelial cells, the low intracellular Ca2+ concentration must be maintained. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) regulates the intracellular Ca2+ concentration by pumping Ca2+ into the sarcoplasmic/endoplasmic reticulum (SR/ER) and Golgi apparatus. Indeed, the ctenidium and inner mantle of T. squamosa, expressed a homolog of SERCA (SERCA-like transporter) that consists of 3009 bp, encoding 1002 amino acids of 110.6 kDa. SERCA-like-immunolabeling was non-uniform in the cytoplasm of epithelial cells of ctenidial filaments, and that of the shell-facing epithelial cells of the inner mantle. Importantly, the protein abundance of SERCA-like increased significantly in the ctenidium and the inner mantle of T. squamosa after 12 h and 6 h, respectively, of light exposure. This would increase the capacity of pumping Ca2+ into the endoplasmic reticulum and avert a possible surge in the cytosolic Ca2+ concentration in epithelial cells of the ctenidial filaments during light-enhanced Ca2+ absorption, and in cells of the shell-facing epithelium of the inner mantle during light-enhanced shell formation.


Asunto(s)
Exoesqueleto/metabolismo , Bivalvos/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Membrana/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Secuencia de Aminoácidos , Exoesqueleto/efectos de la radiación , Animales , Transporte Biológico/efectos de la radiación , Bivalvos/genética , Bivalvos/efectos de la radiación , Western Blotting , Regulación de la Expresión Génica/efectos de la radiación , Luz , Iluminación , Proteínas de Transporte de Membrana/genética , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Homología de Secuencia de Aminoácido
3.
Artículo en Inglés | MEDLINE | ID: mdl-32798693

RESUMEN

The colorful outer mantle of giant clams contains abundance of symbiotic dinoflagellates (zooxanthellae) and iridocytes, and has direct exposure to light. In light, photosynthesizing dinoflagellates produce O2, and the host cells in the outer mantle would be confronted with hyperoxia-related oxidative stress. In comparison, the whitish inner mantle contains few symbiotic dinoflagellates and no iridocytes. It is involved in shell formation, and is shaded from light. CuZnSOD is a cytosolic enzyme that scavenges intracellular O2-. We had obtained from the outer mantle of the fluted giant clam, Tridacna squamosa, the complete cDNA coding sequence of a host-derived copper zinc superoxide dismutase (CuZnSOD), which comprised 462 bp and encoded for 154 amino acids with a calculated MW of 15.6 kDa. CuZnSOD was expressed strongly in the outer mantle, ctenidium, hepatopancreas and kidney. The transcript level of CuZnSOD remained unchanged in the outer mantle during light exposure, but the protein abundance of CuZnSOD increased ~3-fold after exposure to light for 6 or 12 h. By contrast, 12 h of light exposure had no significant effects on the gene and protein expression levels of CuZnSOD/CuZnSOD in the inner mantle. Hence, the increased expression of CuZnSOD in the outer mantle of T. squamosa was probably a host's response to ameliorate oxidative stress related to photosynthesis in the symbionts, and not simply due to increased metabolic rate in the host cells. Evidently, the host clam must possess light- or O2-responsive anti-oxidative defenses in order to align with the light-dependent photosynthetic activity of its symbionts.


Asunto(s)
Bivalvos/fisiología , Color , Luz , Proteínas/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Bivalvos/metabolismo , Bivalvos/efectos de la radiación , Dinoflagelados/metabolismo , Dinoflagelados/fisiología , Fotosíntesis
4.
J Comp Physiol B ; 189(6): 693-706, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31586259

RESUMEN

In light, giant clams can increase rates of shell formation and growth due to their symbiotic relationship with phototrophic zooxanthellae residing extracellularly in a tubular system. Light-enhanced shell formation necessitates increase in the uptake of Ca2+ from the ambient seawater and the supply of Ca2+ through the hemolymph to the extrapallial fluid, where calcification occurs. In this study, the complete coding cDNA sequence of a homolog of voltage-gated calcium channel subunit α1 (CACNA1), which is the pore-forming subunit of L-type voltage-gated calcium channels (VGCCs), was obtained from the ctenidium (gill) of the giant clam, Tridacna squamosa. It consisted of 6081 bp and encoded a 223 kDa polypeptide with 2027 amino acids, which was characterized as the α1D subunit of L-type VGCC. Immunofluorescence microscopy demonstrated that CACNA1 had an apical localization in the epithelial cells of filaments and tertiary water channels in the ctenidium of T. squamosa, indicating that it was well positioned to absorb exogenous Ca2+. Additionally, there was a significant increase in the protein abundance of CACNA1 in the ctenidium of individuals exposed to light for 12 h. With more pore-forming CACNA1, there could be an increase in the permeation of exogenous Ca2+ into the ctenidial epithelial cells through the apical membrane. Taken together, these results denote that VGCC could augment exogenous Ca2+ uptake through the ctenidium to support light-enhanced shell formation in T. squamosa. Furthermore, they support the proposition that light-enhanced phenomena in giant clams are attributable primarily to the direct responses of the host's transporters/enzymes to light, in alignment with the symbionts' phototrophic activity.


Asunto(s)
Bivalvos/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Luz , Secuencia de Aminoácidos , Animales , Células Epiteliales/metabolismo , Filogenia , Distribución Tisular
5.
J Exp Biol ; 222(Pt 7)2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30877228

RESUMEN

Giant clams contain phototrophic zooxanthellae, and live in nutrient-deficient tropical waters where light is available. We obtained the complete cDNA coding sequence of a homolog of mammalian sodium/glucose cotransporter 1 (SGLT1) - SGLT1-like - from the ctenidium of the fluted giant clam, Tridacna squamosaSGLT1-like had a host origin and was expressed predominantly in the ctenidium. Molecular characterizations reveal that SGLT1-like of T. squamosa could transport urea, in addition to glucose, as other SGLT1s do. It has an apical localization in the epithelium of ctenidial filaments and water channels, and the apical anti-SGLT1-like immunofluorescence was stronger in individuals exposed to light than to darkness. Furthermore, the protein abundance of SGLT1-like increased significantly in the ctenidium of individuals exposed to light for 12 h, although the SGLT1-like transcript level remained unchanged. As expected, T. squamosa could perform light-enhanced glucose absorption, which was impeded by exogenous urea. These results denote the close relationships between light-enhanced glucose absorption and light-enhanced SGLT1-like expression in the ctenidium of T. squamosa Although glucose absorption could be trivial compared with the donation of photosynthates from zooxanthellae in symbiotic adults, SGLT1-like might be essential for the survival of aposymbiotic larvae, leading to its retention in the symbiotic stage. A priori, glucose uptake through SGLT1-like might be augmented by the surface microbiome through nutrient cycling, and the absorbed glucose could partially fulfill the metabolic needs of the ctenidial cells. Additionally, SGLT1-like could partake in urea absorption, as T. squamosa is known to conduct light-enhanced urea uptake to benefit the nitrogen-deficient zooxanthellae.


Asunto(s)
Bivalvos/metabolismo , Luz , Transportador 1 de Sodio-Glucosa/genética , Animales , Bivalvos/genética , Bivalvos/efectos de la radiación , Branquias/metabolismo , Glucosa/metabolismo , Análisis de Secuencia de ADN , Transportador 1 de Sodio-Glucosa/metabolismo , Urea/metabolismo
6.
Gene ; 695: 101-112, 2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-30763666

RESUMEN

The fluted giant clam, Tridacna squamosa, lives in symbiosis with photosynthetic zooxanthellae, and can engage in light-enhanced growth and shell formation. Light-enhanced shell formation necessitates the elimination of excess H+ from the extrapallial fluid adjacent to the shell. This study aimed to clone Na+/H+Exchanger (NHE) from the whitish inner mantle adjacent to the extrapallial fluid of T. squamosa, to determine its cellular and subcellular localization, and to evaluate the effect of light exposure on its mRNA expression level and protein abundance therein. The complete coding cDNA sequence of NHE obtained was identified as a homolog of beta NHE (ßNHE-like). It consisted of 2925 bp, encoding for a polypeptide of 974 amino acids and 107.1 kDa, and was expressed predominantly in the inner mantle. There, ßNHE-like was localized in the apical membrane of the seawater-facing epithelium by immunofluorescence microscopy. After exposure to light for 12 h, the seawater-facing epithelium of the inner mantle displayed consistently stronger immunostaining than that of the control exposed to 12 h of darkness. Western blotting confirmed that light exposure significantly enhanced the protein abundance of ßNHE-like in the inner mantle. These results denote that some of the excess H+ generated during light-enhanced shell formation can be excreted through the light-dependent ßNHE-like of the seawater-facing epithelium to minimize the impact on the whole-body pH. Importantly, the excreted H+ could dehydrate exogenous HCO3-, and facilitate the absorption of inorganic carbon through the seawater-facing epithelium dedicated for light-enhanced shell formation due to its close proximity with the shell-facing epithelium. NUCLEOTIDE SYMBOL COMBINATIONS: Pairs: R = A/G; W = A/T; Y = C/T. Triples: D = A/G/T.


Asunto(s)
Bivalvos/genética , Intercambiadores de Sodio-Hidrógeno/genética , Simbiosis/genética , Secuencia de Aminoácidos/genética , Animales , Bivalvos/fisiología , Clonación Molecular , Epitelio/química , Epitelio/metabolismo , Luz , Sistemas de Lectura Abierta/genética , Fotosíntesis/genética , ARN Mensajero/genética , Agua de Mar/microbiología , Intercambiadores de Sodio-Hidrógeno/química
7.
Gene ; 683: 101-112, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30316924

RESUMEN

Giant clams represent symbiotic associations between a host clam and its extracellular zooxanthellae. They are able to grow in nutrient-deficient tropical marine environments and conduct light-enhanced shell formation (calcification) with the aid of photosynthates donated by the symbiotic zooxanthellae. In light, there is a high demand for inorganic carbon (Ci) to support photosynthesis in the symbionts and light-enhanced calcification in the host. In this study, we cloned and characterized a host Carbonic Anhydrase 4 homolog (CA4-like) from the whitish inner mantle of the giant clam Tridacna squamosa. The full cDNA coding sequence of CA4-like consisted of 1002 bp, encoding for 334 amino acids of 38.5 kDa. The host CA4-like was phenogramically distinct from algal CAs. The transcript level of CA4-like in the inner mantle was ~3-fold higher than those in the colorful outer mantle and the ctenidium. In the inner mantle, CA4-like was immunolocalized in the apical membrane of the seawater-facing epithelial cells, but absent from the shell-facing epithelium. Hence, CA4-like was positioned to catalyze the conversion of HCO3- to CO2 in the ambient seawater which would facilitate CO2 uptake. The absorbed CO2 could be converted back to HCO3- by the cytoplasmic CA2-like. As the protein abundance of CA4-like increased in the inner mantle after 6 or 12 h of light exposure, there could be an augmentation of the total CA4-like activity to increase Ci uptake in light. It is plausible that the absorbed Ci was allocated preferentially for shell formation due to the close proximity of the seawater-facing epithelium to the shell-facing epithelium in the inner mantle that contains only few zooxanthellae.


Asunto(s)
Bivalvos/fisiología , Anhidrasa Carbónica IV/genética , Clonación Molecular/efectos de los fármacos , Exoesqueleto/metabolismo , Exoesqueleto/fisiología , Animales , Bivalvos/genética , Anhidrasa Carbónica IV/metabolismo , Sistemas de Lectura Abierta , Filogenia , Análisis de Secuencia de ADN , Distribución Tisular , Regulación hacia Arriba
8.
Front Physiol ; 9: 281, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29632495

RESUMEN

A Dual-Domain Carbonic Anhydrase (DDCA) had been sequenced and characterized from the ctenidia (gills) of the giant clam, Tridacna squamosa, which lives in symbiosis with zooxanthellae. DDCA was expressed predominantly in the ctenidium. The complete cDNA coding sequence of DDCA from T. squamosa comprised 1,803 bp, encoding a protein of 601 amino acids and 66.7 kDa. The deduced DDCA sequence contained two distinct α-CA domains, each with a specific catalytic site. It had a high sequence similarity with tgCA from Tridacna gigas. In T. squamosa, the DDCA was localized apically in certain epithelial cells near the base of the ctenidial filament and the epithelial cells surrounding the tertiary water channels. Due to the presence of two transmembrane regions in the DDCA, one of the Zn2+-containing active sites could be located externally and the other one inside the cell. These results denote that the ctenidial DDCA was positioned to dehydrate [Formula: see text] to CO2 in seawater, and to hydrate the CO2 that had permeated the apical membrane back to [Formula: see text] in the cytoplasm. During insolation, the host clam needs to increase the uptake of inorganic carbon from the ambient seawater to benefit the symbiotic zooxanthellae; only then, can the symbionts conduct photosynthesis and share the photosynthates with the host. Indeed, the transcript and protein levels of DDCA/DDCA in the ctenidium of T. squamosa increased significantly after 6 and 12 h of exposure to light, respectively, denoting that DDCA could participate in the light-enhanced uptake and assimilation of exogenous inorganic carbon.

9.
J Comp Physiol B ; 188(5): 765-777, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29691634

RESUMEN

Ammonium transporters (AMTs) can participate in ammonia uptake or excretion across the plasma membrane of prokaryotic, plant and invertebrate cells. The giant clam, Tridacna squamosa, harbors nitrogen-deficient symbiotic zooxanthellae, and normally conducts light-enhanced ammonia absorption to benefit the symbionts. Nonetheless, it can excrete ammonia when there is a supply of exogenous nitrogen or exposed to continuous darkness. This study aimed to elucidate the role of AMT1 in the ctenidium of T. squamosa by cloning and characterizing the AMT1/AMT1, determining its subcellular localization, and examining changes in its transcript and protein expression levels in response to light exposure. The cDNA coding sequence of AMT1 from T. squamosa consisted of 1527 bp and encoded 508 amino acids of 54.6 kDa. AMT1-immunofluorescence was detected mainly at the apical epithelium of ctenidial filaments, and it decreased significantly after 12 h of exposure to light. By contrast, the epithelial cells surrounding the tertiary water channels in the ctentidium, which are known to exhibit light-enhanced glutamine synthetase expression and take part in the assimilation of exogenous ammonia in light, did not display any AMT1-immunolabelling. Furthermore, the transcript level and protein abundance of ctenidial AMT1/AMT1 decreased significantly at the 6th and 12th h of light exposure. Taken together, these results indicate that AMT1 might participate in ammonia excretion instead of ammonia absorption and assimilation in T. squamosa. It is probable that the expression levels of AMT1/AMT1 need to be down-regulated during light exposure to achieve light-enhanced ammonia uptake.


Asunto(s)
Amoníaco/metabolismo , Bivalvos/efectos de la radiación , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Luz , Secuencia de Aminoácidos , Compuestos de Amonio/metabolismo , Animales , Secuencia de Bases , Transporte Biológico , Bivalvos/genética , Bivalvos/metabolismo , Regulación de la Expresión Génica/efectos de la radiación
10.
J Exp Biol ; 221(Pt 8)2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29540461

RESUMEN

Giant clams live in nutrient-poor reef waters of the Indo-Pacific and rely on symbiotic dinoflagellates (Symbiodinium spp., also known as zooxanthellae) for nutrients. As the symbionts are nitrogen deficient, the host clam has to absorb exogenous nitrogen and supply it to them. This study aimed to demonstrate light-enhanced urea absorption in the fluted giant clam, Tridacna squamosa, and to clone and characterize the urea active transporter DUR3-like from its ctenidium (gill). The results indicate that T. squamosa absorbs exogenous urea, and the rate of urea uptake in the light was significantly higher than that in darkness. The DUR3-like coding sequence obtained from its ctenidium comprised 2346 bp, encoding a protein of 782 amino acids and 87.0 kDa. DUR3-like was expressed strongly in the ctenidium, outer mantle and kidney. Twelve hours of exposure to light had no significant effect on the transcript level of ctenidial DUR3-like However, between 3 and 12 h of light exposure, DUR3-like protein abundance increased progressively in the ctenidium, and became significantly greater than that in the control at 12 h. DUR3-like had an apical localization in the epithelia of the ctenidial filaments and tertiary water channels. Taken together, these results indicate that DUR3-like might participate in light-enhanced urea absorption in the ctenidium of T. squamosa When made available to the symbiotic zooxanthellae that are known to possess urease, the absorbed urea can be metabolized to NH3 and CO2 to support amino acid synthesis and photosynthesis, respectively, during insolation.


Asunto(s)
Bivalvos/metabolismo , Luz , Proteínas de Transporte de Membrana/metabolismo , Urea/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Bivalvos/genética , Dinoflagelados , Perfilación de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Transportadores de Urea
11.
Gene ; 656: 40-52, 2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29496556

RESUMEN

Giant clams harbor symbiotic zooxanthellae (Symbiodinium), which are nitrogen-deficient, mainly in the fleshy and colorful outer mantle. This study aimed to sequence and characterize the algal Glutamine Synthetase (GS) and Glutamate Synthase (GLT), which constitute the glutamate synthase cycle (or GS-GOGAT cycle, whereby GOGAT is the protein acronym of GLT) of nitrogen assimilation, from the outer mantle of the fluted giant clam, Tridacna squamosa. We had identified a novel GS-like cDNA coding sequence of 2325 bp, and named it as T. squamosa Symbiodinium GS1 (TSSGS1). The deduced TSSGS1 sequence had 774 amino acids with a molecular mass of 85 kDa, and displayed the characteristics of GS1 and Nucleotide Diphosphate Kinase. The cDNA coding sequence of the algal GLT, named as T. squamosa Symbiodinium GLT (TSSGLT), comprised 6399 bp, encoding a protein of 2133 amino acids and 232.4 kDa. The zooxanthellal origin of TSSGS1 and TSSGOGAT was confirmed by sequence comparison and phylogenetic analyses. Indeed, TSSGS1 and TSSGOGAT were expressed predominately in the outer mantle, which contained the majority of the zooxanthellae. Immunofluorescence microscopy confirmed the expression of TSSGS1 and TSSGOGAT in the cytoplasm and the plastids, respectively, of the zooxanthellae in the outer mantle. It can be concluded that the symbiotic zooxanthellae of T. squamosa possesses a glutamate synthase (TSSGS1-TSSGOGAT) cycle that can assimilate endogenous ammonia produced by the host clam into glutamate, which can act as a substrate for amino acid syntheses. Thus, our results provide insights into why intact giant clam-zooxanthellae associations do not excrete ammonia under normal circumstances.


Asunto(s)
Bivalvos/microbiología , Dinoflagelados/genética , Glutamato Sintasa/genética , Glutamato-Amoníaco Ligasa/genética , Simbiosis/genética , Aminoácidos , Amoníaco/metabolismo , Animales , Bivalvos/metabolismo , Clonación Molecular , Color , Dinoflagelados/enzimología , Dinoflagelados/metabolismo , Glutamato Sintasa/aislamiento & purificación , Glutamato-Amoníaco Ligasa/aislamiento & purificación , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Filogenia , Alineación de Secuencia
12.
Gene ; 659: 137-148, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29559349

RESUMEN

The giant clam, Tridacna squamosa, represents a clam-zooxanthellae association. In light, the host clam and the symbiotic zooxanthellae conduct light-enhanced calcification and photosynthesis, respectively. We had cloned the cDNA coding sequence of a Vacuolar-type Proton ATPase (VHA) subunit A, ATP6V1A, from T. squamosa, whereby the VHA is an electrogenic transporter that actively 'pumps' H+ out of the cell. The ATP6V1A of T. squamosa comprised 1866 bp, encoding a protein of 622 amino acids and 69.9 kDa, and had a host-origin. Its gene expression was strong in the ctenidium and the colorful outer mantle, but weak in the whitish inner mantle, corroborating a previous proposition that VHA might have a trivial role in light-enhanced calcification. Light exposure led to significant increases in the gene and protein expression levels of ATP6V1A/ATP6V1A in the ctenidium and the outer mantle. In the ctenidium, the ATP6V1A was localized in the apical epithelia of the filaments and tertiary water channels, indicating that the VHA could participate in the increased excretion of H+ produced during light-enhanced calcification. Additionally, the excreted H+ would augment HCO3- dehydration in the external medium and facilitate the uptake of CO2 by the ctenidium during insolation. In the outer mantle, the ATP6V1A was detected in intracellular vesicles in a type of cells, presumably iridocytes, surrounding the zooxanthellal tubules, and in the apical epithelium of zooxanthellal tubules. Hence, the host VHA could participate in the transfer of inorganic carbon from the hemolymph to the luminal fluid of the tubules by increasing the supply of H+ for the dehydration of HCO3- to CO2 during insolation to benefit the photosynthesizing zooxanthellae.


Asunto(s)
Bivalvos/enzimología , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Transporte Biológico , Bivalvos/genética , Compuestos Inorgánicos de Carbono/metabolismo , Clonación Molecular , Protones , Simbiosis
13.
Physiol Rep ; 5(23)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29199178

RESUMEN

The fluted giant clam, Tridacna squamosa, lives in symbiosis with zooxanthellae which reside extracellularly inside a tubular system. Zooxanthellae fix inorganic carbon (Ci) during insolation and donate photosynthate to the host. Carbonic anhydrases catalyze the interconversion of CO2 and HCO3-, of which carbonic anhydrase 2 (CA2) is the most ubiquitous and involved in many biological processes. This study aimed to clone a CA2 homolog (CA2-like) from the fleshy and colorful outer mantle as well as the thin and whitish inner mantle of T. squamosa, to determine its cellular and subcellular localization, and to examine the effects of light exposure on its gene and protein expression levels. The cDNA coding sequence of CA2-like from T. squamosa comprised 789 bp, encoding 263 amino acids with an estimated molecular mass of 29.6 kDa. A phenogramic analysis of the deduced CA2-like sequence denoted an animal origin. CA2-like was not detectable in the shell-facing epithelium of the inner mantle adjacent to the extrapallial fluid. Hence, CA2-like is unlikely to participate directly in light-enhanced calcification. By contrast, the outer mantle, which contains the highest density of tertiary tubules and zooxanthellae, displayed high level of CA2-like expression, and CA2-like was localized to the tubule epithelial cells. More importantly, exposure to light induced significant increases in the protein abundance of CA2-like in the outer mantle. Hence, CA2-like could probably take part in the increased supply of inorganic carbon (Ci) from the host clam to the symbiotic zooxanthellae when the latter conduct photosynthesis to fix Ci during light exposure.


Asunto(s)
Bivalvos/enzimología , Anhidrasa Carbónica II/metabolismo , Exoesqueleto/metabolismo , Animales , Bivalvos/parasitología , Dióxido de Carbono/metabolismo , Anhidrasa Carbónica II/química , Anhidrasa Carbónica II/genética , Dinoflagelados/patogenicidad , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Luz Solar , Simbiosis
14.
Front Physiol ; 8: 880, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209224

RESUMEN

The freshwater climbing perch, Anabas testudineus, is an euryhaline teleost and an obligate air-breather with the ability to actively excrete ammonia. Members of the Na+/H+ exchanger (NHE) family help maintain intracellular pH homeostasis and ionic balance through the electroneutral exchange of Na+ and H+. This study aimed to obtain, from the gills of A. testudineus, the full cDNA coding sequence of nhe3, and to determine the effects of exposure to seawater or 100 mmol l-1 of NH4Cl in fresh water on its mRNA and protein expression levels. Efforts were also made to elucidate the type of ionocyte that Nhe3 was associated with in the branchial epithelium of A. testudineus. The transcript level and protein abundance of nhe3/Nhe3 were very low in the gills of freshwater A. testudineus, but they increased significantly in the gills of fish acclimated to seawater. In the gills of fish exposed to seawater, Nhe3 was expressed in two distinct types of seawater-inducible Na+/K+-ATPase (Nka)-immunoreactive ionocytes. In Nkaα1b-immunoreactive ionocytes, Nhe3 had an apical localization. As these ionocytes also expressed apical Rhcg1 and basolateral Rhcg2, which are known to transport ammonia, they probably participated in proton-facilitated ammonia excretion in A. testudineus during seawater acclimation. In Nkaα1c-immunoreactive ionocytes, Nhe3 was atypically expressed in the basolateral membrane, and its physiological function is uncertain. For A. testudineus exposed to NH4Cl in fresh water, the transcript and protein expression levels of nhe3/Nhe3 remained low. In conclusion, the branchial Nhe3 of A. testudineus plays a greater physiological role in passive ammonia transport and acid-base balance during seawater acclimation than in active ammonia excretion during environmental ammonia exposure.

15.
Front Physiol ; 8: 781, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29066980

RESUMEN

Giant clams live in symbiosis with extracellular zooxanthellae and display high rates of growth and shell formation (calcification) in light. Light-enhanced calcification requires an increase in the supply of Ca2+ to, and simultaneously an augmented removal of H+ from, the extrapallial fluid where shell formation occurs. We have obtained the complete coding cDNA sequence of Plasma Membrane Ca2+-ATPase (PMCA) from the thin and whitish inner mantle, which is in touch with the extrapallial fluid, of the giant clam Tridacna squamosa. The deduced PMCA sequence consisted of an apical targeting element. Immunofluorescence microscopy confirmed that PMCA had an apical localization in the shell-facing epithelium of the inner mantle, whereby it can actively secrete Ca2+ in exchange for H+. More importantly, the apical PMCA-immunofluorescence of the shell-facing epithelium of the inner mantle increased significantly after 12 h of exposure to light. The transcript and protein levels of PMCA/PMCA also increased significantly in the inner mantle after 6 or 12 h of light exposure. These results offer insights into a light-dependable mechanism of shell formation in T. squamosa and a novel explanation of light-enhanced calcification in general. As the inner mantle normally lacks light sensitive pigments, our results support a previous proposition that symbiotic zooxanthellae, particularly those in the colorful and extensible outer mantle, may act as light-sensing elements for the host clam.

16.
PLoS One ; 12(10): e0185814, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29073147

RESUMEN

African lungfishes are ammonotelic in water. They can aestivate for long periods on land during drought. During aestivation, the gills are covered with dried mucus and ammonia excretion ceases. In fishes, ammonia excretion through the gills involves Rhesus glycoproteins (RhGP/Rhgp). This study aimed to obtain the complete cDNA coding sequences of rhgp from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Three isoforms of rhgp (rhag, rhbg and rhcg) were obtained in the gills of P. annectens. Their complete cDNA coding sequences ranged between 1311 and 1398 bp, coding for 436 to 465 amino acids with estimated molecular masses between 46.8 and 50.9 kDa. Dendrogramic analyses indicated that Rhag was grouped closer to fishes, while Rhbg and Rhcg were grouped closer to tetrapods. During the induction phase, the protein abundance of Rhag, but not its transcript level, was down-regulated in the gills, suggesting that there could be a decrease in the release of ammonia from the erythrocytes to the plasma. Furthermore, the branchial transcript levels of rhbg and rhcg decreased significantly, in preparation for the subsequent shutdown of gill functions. During the maintenance phase, the branchial expression levels of rhag/Rhag, rhbg/Rhbg and rhcg/Rhcg decreased significantly, indicating that their transcription and translation were down-regulated. This could be part of an overall mechanism to shut down branchial functions and save metabolic energy used for transcription and translation. It could also be regarded as an adaptive response to stop ammonia excretion. During the arousal phase, it is essential for the lungfish to regain the ability to excrete ammonia. Indeed, the protein abundance of Rhag, Rhbg and Rhcg recovered to the corresponding control levels after 1 day or 3 days of recovery from 6 months of aestivation.


Asunto(s)
Peces/genética , Branquias/metabolismo , Glicoproteínas/genética , ARN Mensajero/genética , Secuencia de Aminoácidos , Animales , Regulación hacia Abajo , Homología de Secuencia de Aminoácido
17.
PLoS One ; 12(10): e0186865, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29049367

RESUMEN

Na+/K+-ATPase (NKA) is essential for maintaining the Na+ and K+ gradients, and supporting the secondary active transport of certain ions/molecules, across the plasma membrane of animal cells. This study aimed to clone the NKA α-subunit (NKAα) from the inner mantle adjacent to the extrapallial fluid of Tridacna squamosa, to determine its subcellular localization, and to examine the effects of light exposure on its transcript level and protein abundance. The cDNA coding sequence of NKAα from T. squamosa comprised 3105 bp, encoding 1034 amino acids with an estimated molecular mass of 114 kDa. NKAα had a basolateral localization along the shell-facing epithelium of the inner mantle. Exposure to 12 h of light led to a significantly stronger basolateral NKAα-immunofluorescence at the shell-facing epithelium, indicating that NKA might play a role in light-enhanced calcification in T. squamosa. After 3 h of light exposure, the transcript level of NKAα decreased transiently in the inner mantle, but returned to the control level thereafter. In comparison, the protein abundance of NKAα remained unchanged at hour 3, but became significantly higher than the control after 12 h of light exposure. Hence, the expression of NKAα in the inner mantle of T. squamosa was light-dependent. It is probable that a higher expression level of NKA was needed in the shell-facing epithelial cells of the inner mantle to cope with a rise in Na+ influx, possibly caused by increases in activities of some Na+-dependent ion transporters/channels involved in light-enhanced calcification.


Asunto(s)
Bivalvos/metabolismo , Luz , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , ADN Complementario , Epitelio/metabolismo , Microscopía Fluorescente , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Homología de Secuencia de Aminoácido , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/genética
18.
J Exp Biol ; 220(Pt 16): 2916-2931, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28576822

RESUMEN

The freshwater climbing perch, Anabas testudineus, is an obligate air-breathing and euryhaline teleost capable of active ammonia excretion and tolerant of high concentrations of environmental ammonia. As Rhesus glycoproteins (RhGP/Rhgp) are known to transport ammonia, this study aimed to obtain the complete cDNA coding sequences of various rhgp isoforms from the gills of A. testudineus, and to determine their mRNA and protein expression levels during 6 days of exposure to 100 mmol l-1 NH4Cl. The subcellular localization of Rhgp isoforms in the branchial epithelium was also examined in order to elucidate the type of ionocyte involved in active ammonia excretion. Four rhgp (rhag, rhbg, rhcg1 and rhcg2) had been identified from the gills of A. testudineus They had conserved amino acid residues for NH4+ binding, NH4+ deprotonation, channel gating and lining of the vestibules. Despite inwardly directed NH3 and NH4+ gradients, there were significant increases in the mRNA expression levels of the four branchial rhgp in A. testudineus at certain time points during 6 days of ammonia exposure, with significant increases in the protein abundances of Rhag and Rhcg2 on day 6. Immunofluorescence microscopy revealed a type of ammonia-inducible Na+/K+-ATPase α1c-immunoreactive ionocyte with apical Rhag and basolateral Rhcg2 in the gills of fish exposed to ammonia for 6 days. Hence, active ammonia excretion may involve NH4+ entering the ionocyte through the basolateral Rhcg2 and being excreted through the apical Rhag, driven by a transapical membrane electrical potential generated by the apical cystic fibrosis transmembrane conductance regulator Cl- channel, as suggested previously.


Asunto(s)
Amoníaco/metabolismo , Proteínas de Peces/genética , Glicoproteínas/genética , Perciformes/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Branquias/metabolismo , Branquias/fisiología , Glicoproteínas/química , Glicoproteínas/metabolismo , Perciformes/genética , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia
19.
Physiol Rep ; 5(8)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28438983

RESUMEN

Na+/H+ exchangers (NHEs) regulate intracellular pH and ionic balance by mediating H+ efflux in exchange for Na+ uptake in a 1:1 stoichiometry. This study aimed to obtain from the ctenidium of the giant clam Tridacna squamosa (TS) the complete cDNA sequence of a NHE3-like transporter (TSNHE3), and to determine the effect of light exposure on its mRNA expression level and protein abundance therein. The coding sequence of TSNHE3 comprised 2886 bp, encoding 961 amino acids with an estimated molecular mass of 105.7 kDa. Immunofluorescence microscopy revealed that TSNHE3 was localized to the apical membrane of epithelial cells of the ctenidial filaments and the tertiary water channels. Particularly, the apical immunofluorescence of the ctenidial filaments was consistently stronger in the ctenidium of clams exposed to 12 h of light than those of the control kept in darkness. Indeed, light induced significant increases in the transcript level and protein abundance of TSNHE3/TSNHE3 in the ctenidium, indicating that the transcription and translation of TSNHE3/TSNHE3 were light-dependent. As light-enhanced calcification generates H+, the increased expression of TSNHE3/TSNHE3 in the ctenidium could be a response to augment H+ excretion in pursuance of whole-body acid-base balance during light exposure. These results signify that shell formation in giant clams requires the collaboration between the ctenidium, which is a respiratory and iono-regulatory organ, and the inner mantle, which is directly involved in the calcification process, and provide new insights into the mechanisms of light-enhanced calcification in giant clams.


Asunto(s)
Calcificación Fisiológica , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Luz Solar , Exoesqueleto/metabolismo , Exoesqueleto/efectos de la radiación , Animales , Bivalvos , Células Epiteliales/metabolismo , Hidrógeno/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/genética
20.
J Comp Physiol B ; 187(7): 911-929, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28324156

RESUMEN

Himantura signifer is a freshwater stingray which inhabits rivers in Southeast Asia. It is ammonotelic in fresh water, but retains the capacities of urea synthesis and ureosmotic osmoregulation to survive in brackish water. This study aimed to elucidate the roles of Rhesus glycoproteins (Rhgp), which are known to transport ammonia, in conserving nitrogen (N) in H. signifer during brackish water acclimation when N became limited resulting from increased hepatic urea synthesis. The complete coding sequence of rhbg from H. signifer consisted of 1383 bp, encoding 460 amino acids with an estimated molecular mass of 50.5 kDa, while that of rhcg comprised 1395 bp, encoding for 464 amino acids with an estimated molecular mass of 50.8 kDa. The deduced amino sequences of Rhbg and Rhcg contained ammonia binding sites, which could recruit NH4+ to be deprotonated, and a hydrophobic pore with two histidine residues, which could mediate the transport of NH3. Our results indicated for the first time that brackish water acclimation resulted in significant decreases in the expression levels of rhbg/Rhbg and rhcg/Rhcg in the gills of H. signifer, which offered a mechanistic explanation of brackish water-related decreased ammonia excretion reported elsewhere. Furthermore, rhbg/Rhbg expression levels increased significantly in the liver of H. signifer during brackish water acclimation, indicating that the ammonia produced by extra-hepatic tissues and released into the blood could be channeled into the liver for increased urea synthesis. Overall, these results lend support to the proposition that H. signifer becomes N-limited upon utilizing urea as an osmolyte in brackish water.


Asunto(s)
Proteínas de Peces/metabolismo , Agua Dulce/química , Branquias/metabolismo , Glicoproteínas/metabolismo , Riñón/metabolismo , Hígado/metabolismo , ARN Mensajero/metabolismo , Sistema del Grupo Sanguíneo Rh-Hr/metabolismo , Aguas Salinas/química , Tolerancia a la Sal , Rajidae/metabolismo , Amoníaco/metabolismo , Animales , Clonación Molecular , Proteínas de Peces/química , Proteínas de Peces/genética , Regulación de la Expresión Génica , Glicoproteínas/química , Glicoproteínas/genética , Osmorregulación , Conformación Proteica , ARN Mensajero/genética , Sistema del Grupo Sanguíneo Rh-Hr/genética , Salinidad , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína , Rajidae/sangre , Rajidae/genética , Relación Estructura-Actividad , Transcripción Genética , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...