Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 10(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667690

RESUMEN

Due to its excellent biocompatibility and ease of biodegradation, jellyfish gelatin has gained attention as a hydrogel. However, hydrogel produced from jellyfish gelatin has not yet been sufficiently characterized. Therefore, this research aims to produce a jellyfish gelatin-based hydrogel. The gelatin produced from desalted jellyfish by-products varied with the part of the specimen and extraction time. Hydrogels with gelatin: glutaraldehyde ratios of 10:0.25, 10:0.50, and 10:1.00 (v/v) were characterized, and their cefazolin release ability was determined. The optimal conditions for gelatin extraction and chosen for the development of jellyfish hydrogels (JGel) included the use of the umbrella part of desalted jellyfish by-products extracted for 24 h (WU24), which yielded the highest gel strength (460.02 g), viscosity (24.45 cP), gelling temperature (12.70 °C), and melting temperature (22.48 °C). The quantities of collagen alpha-1(XXVIII) chain A, collagen alpha-1(XXI) chain, and collagen alpha-2(IX) chain in WU24 may influence its gel properties. Increasing the glutaraldehyde content in JGel increased the gel fraction by decreasing the space between the protein chains and gel swelling, as glutaraldehyde binds with lateral amino acid residues and produces a stronger network. At 8 h, more than 80% of the cefazolin in JGel (10:0.25) was released, which was higher than that released from bovine hydrogel (52.81%) and fish hydrogel (54.04%). This research is the first report focused on the production of JGel using glutaraldehyde as a cross-linking agent.

2.
PLoS One ; 17(11): e0276080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36322524

RESUMEN

The use of by-products of salted jellyfish for gelatin production offers valuable gelatin products rather than animal feed. Several washes or washing machines have reported removing salt in salted jellyfish. However, the green ultrasound technique has never been reported for the desalination of salted jellyfish. The objectives were to determine how effectively the raw material's salt removal was done by combining the traditional wash and then subjected to the ultrasonic waves in a sonication bath for 20-100 min. For gelatin production, the ultrasonicated jellyfish by-products were pretreated with sodium hydroxide and hydrochloric acid, washed, and extracted with hot water for 4, 6, and 8 h. Results showed that the increased duration of ultrasound time increased the desalination rate. The highest desalination rate of 100% was achieved using 100 min ultrasonic time operated at a fixed frequency (40 kHz) and power (220 W). The jellyfish gelatin extracted for 4, 6, and 8 h showed gel strengths in 121-447, 120-278, and 91-248 g. The 80 min ultrasonicated sample and hot water extraction for 8 h (JFG80-8) showed the highest gel yield of 32.69%, with a gel strength of 114.92 g. Still, the 40 min ultrasonicated sample with 4 h of extraction delivered the highest gel strength of 447.01 g (JFG40-4) and the lower yield of 10.60%. The melting and gelling temperatures of jellyfish gelatin from ultrasonicated samples ranged from 15-25°C and 5-12°C, which are lower than bovine gelatin (BG) and fish gelatin (FG). Monitored by FITR, the synergistic effect of extended sonication time (from 20-100 min) with 4 h extraction time at 80 °C caused amide I, II, and III changes. Based on the proteomic results, the peptide similarity of JFG40-4, having the highest gel strength, was 17, 23, or 20 peptides compared to either BG, FG, or JFG100-8 having the lowest gel strength. The 14 peptides were similarly found in all JFG40-4, BG, and FG samples. In conclusion, for the first time in this report, the improved jellyfish gel can be achieved when combined with traditional wash and 40 min ultrasonication of desalted jellyfish and extraction time of 4 h at 80 °C.


Asunto(s)
Cnidarios , Gelatina , Animales , Bovinos , Proteómica , Geles , Coloides , Peces , Cloruro de Sodio , Péptidos , Agua
3.
PLoS One ; 16(6): e0253254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34143821

RESUMEN

Marine gelatin is one of the food proteins used in food and non-food products, offering desirable functionalities such as gelling, thickening, and binding. Jellyfish has been chosen for this gelatin research, in view of the benefits of its main collagen protein and lower fat content, which may reduce the amounts of chemicals used in the preparative steps of gelatin production. To date, the lack of identified proteins in gelatin has limited the understanding of differentiating intrinsic factors quantitatively and qualitatively affecting gel properties. No comparison has been made between marine gelatin of fish and that of jellyfish, regarding protein type and distribution differences. Therefore, the study aimed at characterizing jellyfish gelatin extracted from by-products, that are i.e., pieces that have broken off during the grading and cleaning step of salted jellyfish processing. Different pretreatment by hydrochloric acid (HCl) concentrations (0.1 and 0.2 M) and hot water extraction time (12 and 24 h) were studied as factors in jellyfish gelatin extraction. The resultant jellyfish gelatin with the highest gel strength (JFG1), as well as two commercial gelatins of fish gelatin (FG) and bovine gelatin (BG), were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that the jellyfish gelatin (JFG1) extracted with 0.1 M HCl at 60°C for 12 h delivered a maximum gel strength of 323.74 g, which is lower than for FG and BG, exhibiting 640.65 and 540.06 g, respectively. The gelling and melting temperatures of JFG1 were 7.1°C and 20.5°C, displaying a cold set gel and unstable gel at room temperature, whereas the gelling and melting temperatures of FG and BG were 17.4°C, 21.3°C, and 27.5°C, 32.7°C, respectively. Proteomic analysis shows that 29 proteins, of which 10 are types of collagen proteins and 19 are non-collagen proteins, are common to all BG, FG, and JFG1, and that JFG1 is missing 3 other collagen proteins (collagen alpha-2 (XI chain), collagen alpha-2 (I chain), and collagen alpha-2 (IV chain), that are important to gel networks. Thus, the lack of these 3 collagen types influences the inferior gel properties of jellyfish gelatin.


Asunto(s)
Colágeno/química , Gelatina/química , Geles/química , Animales , Cromatografía Liquida , Proteómica , Escifozoos , Espectrometría de Masas en Tándem
4.
Biochim Biophys Acta ; 1858(8): 1876-82, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27155568

RESUMEN

Fibroblast activation protein (FAP) is a cell-surface serine protease which promotes invasiveness of certain epithelial cancers and is therefore a potential target for cancer drug development and delivery. Unlike dipeptidyl peptidase IV (DPPIV), FAP exhibits prolyl endopeptidase activity and is active as a homodimer with specificity for type I collagen. The mechanism that regulates FAP homodimerization and its relation to prolyl endopeptidase activity is not completely understood. Here, we investigate key residues in the FAP TM domain that may be significant for FAP homodimerization. Mutations to predicted TM interfacial residues (G10L, S14L, and A18L) comprising a small-X3-small motif reduced FAP TM-CYTO dimerization relative to wild type as measured using the AraTM assay, whereas predicted off-interface residues showed no significant change from wild type. The results implied that the predicted small-X3-small dimer interface affect stabilization of FAP TM-CYTO homodimerization. Compared with FAPwild-type, the interfacial TM residue G10L significantly decreased FAP endopeptidase activity more than 25%, and also reduced cell-surface versus intracellular expression relative to other interfacial residues S14L and A18L. Thus, our results suggest FAP dimerization is important for both trafficking and protease activity, and is dependent on a specific TM interface.


Asunto(s)
Gelatinasas/química , Proteínas de la Membrana/química , Serina Endopeptidasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Factor de Transcripción de AraC/genética , Dimerización , Endopeptidasas , Proteínas de Escherichia coli/genética , Gelatinasas/genética , Gelatinasas/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Transporte de Proteínas , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Fracciones Subcelulares/química
5.
Protein Expr Purif ; 58(1): 78-86, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18083533

RESUMEN

Endoglucanase is a major cellulolytic enzyme produced by Syncephalastrum racemosum (BCC18080). Preliminary results showed that this endoglucanase is thermotolerant as it retained more than 50% of its activity after incubation at 80 degrees C for an hour. As this property may be of industrial use, we have cloned the full-length BCC18080 endoglucanase gene of 1020 nucleotides. Sequence analysis suggested that it belonged to the glycosyl hydrolase family 45. N-terminal sequencing and analysis by SignalP program suggested that the first 32 amino acid residues encoded the signal peptide. Expression of the recombinant clones with and without its own signal peptide in Pichia pastoris demonstrated that P. pastoris produced active 55 and 30 kDa secreted proteins. N-terminal sequencing suggested that the 55 kDa band was the mature protein while the 30 kDa band was the truncated protein. Glycoprotein analysis showed that the 55 kDa protein was glycosylated; while the smaller protein was not. All recombinant endoglucanases showed optimal temperature of 70 degrees C and optimal pH of 5-6. They retained more than 50% activity for 4h at 70 degrees C. In addition, high k(cat) and low apparent K(m) of these recombinant proteins indicated good properties of this enzyme against carboxylmethylcellulose.


Asunto(s)
Celulasa , Mucorales/metabolismo , Pichia/genética , Secuencia de Aminoácidos , Secuencia de Bases , Celulasa/química , Celulasa/genética , Celulasa/aislamiento & purificación , Celulasa/metabolismo , Clonación Molecular , Estabilidad de Enzimas , Expresión Génica , Datos de Secuencia Molecular , Mucorales/genética , Pichia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA