Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732702

RESUMEN

Meat quality and shelf life are important parameters affecting consumer perception and safety. Several factors contribute to the deterioration and spoilage of meat products, including microbial growth, chemical reactions in the food's constituents, protein denaturation, lipid oxidation, and discoloration. This study reviewed the development of functional packaging biomaterials that interact with food and the environment to improve food's sensory properties and consumer safety. Bioactive packaging incorporates additive compounds such as essential oils, natural extracts, and chemical substances to produce composite polymers and polymer blends. The findings showed that the incorporation of additive compounds enhanced the packaging's functionality and improved the compatibility of the polymer-polymer matrices and that between the polymers and active compounds. Food preservatives are alternative substances for food packaging that prevent food spoilage and preserve quality. The safety of food contact materials, especially the flavor/odor contamination from the packaging to the food and the mass transfer from the food to the packaging, was also assessed. Flavor is a key factor in consumer purchasing decisions and also determines the quality and safety of meat products. Novel functional packaging can be used to preserve the quality and safety of packaged meat products.

2.
Polymers (Basel) ; 15(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37631399

RESUMEN

Ulva rigida green seaweed is an abundant biomass consisting of polysaccharides and protein mixtures and a potential bioresource for bioplastic food packaging. This research prepared and characterized novel biodegradable films from Ulva rigida extracts. The water-soluble fraction of Ulva rigida was extracted and prepared into bioplastic films. 1H nuclear magnetic resonance indicated the presence of rhamnose, glucuronic and sulfate polysaccharides, while major amino acid components determined via high-performance liquid chromatography (HPLC) were aspartic acid, glutamic acid, alanine and glycine. Seaweed extracts were formulated with glycerol and triethyl citrate (20% and 30%) and prepared into films. Ulva rigida films showed non-homogeneous microstructures, as determined via scanning electron microscopy, due to immiscible crystalline component mixtures. X-ray diffraction also indicated modified crystalline morphology due to different plasticizers, while infrared spectra suggested interaction between plasticizers and Ulva rigida polymers via hydrogen bonding. The addition of glycerol decreased the glass transition temperature of the films from -36 °C for control films to -62 °C for films with 30% glycerol, indicating better plasticization. Water vapor and oxygen permeability were retained at up to 20% plasticizer content, and further addition of plasticizers increased the water permeability up to 6.5 g·mm/m2·day·KPa, while oxygen permeability decreased below 20 mL·mm/m2·day·atm when blending plasticizers at 30%. Adding glycerol efficiently improved tensile stress and strain by up to 4- and 3-fold, respectively. Glycerol-plasticized Ulva rigida extract films were produced as novel bio-based materials that supported sustainable food packaging.

3.
Food Chem ; 420: 136107, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105087

RESUMEN

Improved miscibility between thermoplastic starch (TPS) and polybutylene adipate-co-terephthalate (PBAT) enhances processability and properties of TPS-based biodegradable plastic packaging. This research investigated compatibility and functionality of TPS/PBAT (50/50) blends with sodium nitrite and sodium erythorbate (1-5%) via blown film extrusion. Film morphology and mechanical and barrier properties were investigated. Sodium nitrite and sodium erythorbate improved processing efficiency of TPS, modified film flexibility and enhanced physical and chemical compatibility between TPS and PBAT matrices via hydrolysis, confirmed by 1H NMR and ATR-FTIR analyses. These chemical reactions also affected thermal and phase transition behaviors. Increased starch granule dispersion caused smoother microstructure, resulting in higher oxygen barrier. Sodium nitrite and sodium erythorbate functionalized TPS/PBAT films reduced discoloration of packaged cured meat during storage at 4 °C for 9 days. These compounds provided extra functionality and improved compatibility between TPS and PBAT biodegradable plastic blends for novel and sustainable food packaging.


Asunto(s)
Plásticos Biodegradables , Manihot , Almidón/química
4.
Polymers (Basel) ; 14(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36235988

RESUMEN

Consumers are now more concerned about food safety and hygiene following the COVID-19 pandemic. Antimicrobial packaging has attracted increased interest by reducing contamination of food surfaces to deliver quality and safe food while maintaining shelf life. Active packaging materials to reduce contamination or inhibit viral activity in packaged foods and on packaging surfaces are mostly prepared using solvent casting, but very few materials demonstrate antiviral activity on foods of animal origin, which are important in the human diet. Incorporation of silver nanoparticles, essential oils and natural plant extracts as antimicrobial agents in/on polymeric matrices provides improved antifungal, antibacterial and antiviral properties. This paper reviews recent developments in antifungal, antibacterial and antiviral packaging incorporating natural or synthetic compounds using preparation methods including extrusion, solvent casting and surface modification treatment for surface coating and their applications in several foods (i.e., bakery products, fruits and vegetables, meat and meat products, fish and seafood and milk and dairy foods). Findings showed that antimicrobial material as films, coated films, coating and pouches exhibited efficient antimicrobial activity in vitro but lower activity in real food systems. Antimicrobial activity depends on (i) polar or non-polar food components, (ii) interactions between antimicrobial compounds and the polymer materials and (iii) interactions between environmental conditions and active films (i.e., relative humidity, oxygen and water vapor permeability and temperature) that impact the migration or diffusion of active compounds in foods. Knowledge gained from the plethora of existing studies on antimicrobial polymers can be effectively utilized to develop multifunctional antimicrobial materials that can protect food products and packaging surfaces from SARS-CoV-2 contamination.

5.
Polymers (Basel) ; 14(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36297852

RESUMEN

Hemp (Cannabis sativa Linn) is a high-yielding annual crop farmed for its stalk fiber and oil-producing seeds. This specialized crop is currently experiencing a revival in production. Hemp fiber contains pectin, hemicellulose and lignin with superior strength, while hemp seed oil contains unsaturated triglycerides with well-established nutritional and physiological properties. Therefore, focus on the utilization of hemp in various industries is increasing globally. This study reviewed recent applications of hemp components, including fiber and extract, in food, textile and packaging applications. Hemp fibers mainly consisting of cellulose derivatives have superior strength to be used as reinforcements in thermoplastic packaging and paper. Combined physical and chemical modifications of hemp fibers improved mechanical and barrier properties of composite materials. Physically and chemically processed hemp extracts have been used in food and non-food applications. Functional foods containing hemp oils deliver nutrients by their unsaturated lipids. High-quality hemp fiber with several fiber modifications has been applied in garments. Innovative applications of hemp components and by-products are increasing, thereby facilitating utilization of green sustainable biomaterials.

6.
Polymers (Basel) ; 14(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36145850

RESUMEN

Seafood is a highly economical product worldwide. Primary modes of deterioration include autolysis, oxidation of protein and lipids, formation of biogenic amines and melanosis, and microbial deterioration. These post-harvest losses can be properly handled if the appropriate packaging technology has been applied. Therefore, it is necessary for packaging deterioration relevance to be clearly understood. This review demonstrates recent polymeric packaging technology for seafood products. Relationship between packaging and quality deterioration, including microbial growth and chemical and biochemical reactions, are discussed. Recent technology and trends in the development of seafood packaging are demonstrated by recent research articles and patents. Development of functional polymers for active packaging is the largest area for seafood applications. Intelligent packaging, modified atmosphere packaging, thermal insulator cartons, as well as the method of removing a fishy aroma have been widely developed and patented to solve the specific and comprehensive quality issues in seafood products. Many active antioxidant and antimicrobial compounds have been found and successfully incorporated with polymers to preserve the quality and monitor the fish freshness. A thermal insulator has also been developed for seafood packaging to preserve its freshness and avoid deterioration by microbial growth and enzymatic activity. Moreover, the enhanced biodegradable tray is also innovative as a single or bulk fish container for marketing and distribution. Accordingly, this review shows emerging polymeric packaging technology for seafood products and the relevance between packaging and seafood qualities.

7.
Polymers (Basel) ; 14(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36145938

RESUMEN

Polymeric materials including plastic and paper are commonly used as packaging for bakery products. The incorporation of active substances produces functional polymers that can effectively retain the quality and safety of packaged products. Polymeric materials can be used to produce a variety of package forms such as film, tray, pouch, rigid container and multilayer film. This review summarizes recent findings and developments of functional polymeric packaging for bakery products. Functional polymerics are mainly produced by the incorporation of non-volatile and volatile active substances that effectively retain the quality of packaged bakery products. Antimicrobial agents (either synthetic or natural substances) have been intensively investigated, whereas advances in coating technology with functional materials either as edible coatings or non-edible coatings have also preserved the quality of packaged bakery products. Recent patents demonstrate novel structural packaging designs combined with active functions to extend the shelf life of bakery products. Other forms of active packaging technology for bakery products include oxygen absorbers and ethanol emitters. The latest research progress of functional polymeric packaging for bakery products, which provides important reference value for reducing the waste and improving the quality of packaged products, is demonstrated. Moreover, the review systematically analyzed the spoilage factors of baked products from physicochemical, chemical and microbiological perspectives. Functional packaging using polymeric materials can be used to preserve the quality of packaged bakery products.

8.
Colloids Surf B Biointerfaces ; 214: 112472, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35364455

RESUMEN

Biodegradable polymers typically have inferior barrier properties compared to petroleum-based nonbiodegradable plastic. The addition of zinc oxide nanoparticles may enhance the functional properties of biodegradable packaging and extends the shelf life of packaged foods. Polybutylene adipate-co-terephthalate (PBAT) and thermoplastic starch (TPS) blended ZnO (1-5%) nanocomposite films were developed via blown extrusion for functional active meat packaging. The nanocomposite film morphology showed agglomeration of the nanoparticles, causing poor mechanical properties. Nanovoids formed at the interface between the polymer and nanoparticles, increasing permeability. Dispersion of ZnO nanofillers modified CO and C-O ester bonding in PBAT and increased hydrogen bonding with TPS. The interaction between ZnO and polymers increased the dispersion and reduced the agglomeration of nanoparticles. The highest ZnO content at 5% resulted in a stronger interaction between ZnO and TPS due to increased amorphous starch content, which improved homogeneous dispersion within the matrices, reducing nanoparticle size. The ZnO nanocomposite films reduced lipid oxidation and delayed microbial growth, resulting in a lower total viable count, lactic acid bacteria and yeast and mold in packaged pork meat. Higher ZnO concentrations from 3% showed microbial inhibitory effects. The growth of microorganisms was controlled by residual oxygen, morphology of the films and nanoparticle characteristics. The nanocomposite films effectively extended the shelf life by more than 3 days under refrigerated conditions.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Embalaje de Alimentos/métodos , Esperanza de Vida , Carne , Polímeros , Almidón , Óxido de Zinc/farmacología
9.
Food Chem ; 374: 131709, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-34875439

RESUMEN

Functional bioplastic packaging was produced from thermoplastic starch (TPS) with nitrite (1-5%) and polybutylene adipate terephthalate (PBAT) (PBAT/TPS at 30/70 and 40/60) via blown-film extrusion. TPS-nitrite interaction increased thermal destabilization and decreased α-relaxation temperature of TPS phase, indicating improved plasticization and disruption of starch granules. Nitrite modified C=O bonding of PBAT and improved compatibility with TPS networks, resulting in compact microstructures that reduced oxygen and water vapor permeability. Films containing nitrite showed up to 39.7% decrease (p≤0.05) in mechanical properties while effectively improving and stabilizing redness of vacuum-packaged pork during storage for 12 days. Nitrite release led to up to 0.66 ppm residual nitrite, which corresponded to formation of nitrosyl myoglobin (3.4-9.6 ppm), and effectively reduced total viable count, lactic acid bacteria and yeast and molds (p≤0.05). Stabilized lipid components also increased with increasing nitrite. Novel nitrite-containing biodegradable film enhanced functional properties and retained quality of packaged meat.


Asunto(s)
Carne de Cerdo , Almidón , Adipatos , Embalaje de Alimentos , Nitritos , Oxígeno
10.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34883695

RESUMEN

Biodegradable polymers can be used for eco-friendly, functional, active packaging to preserve food quality. Incorporation of titanium dioxide (TiO2) nanoparticles into polymer packaging enhances ethylene-scavenging activity and extends the shelf-life of fresh produce. In this study, TiO2 nanoparticles were incorporated into biodegradable poly(butylene adipate-co-terephthalate) (PBAT)- and thermoplastic cassava starch (TPS)-blended films to produce nanocomposite packaging via blown-film extrusion. The effects of TiO2 on morphology, packaging properties, and applications as functional packaging for fresh produce were investigated. Increased TiO2 in the film packaging increased amorphous starch content and hydrogen bonding by interacting with the TPS phase of the polymer blend, with negligible chemical interaction with the PBAT component and identical mechanical relaxation in the PBAT phase. Surface topography indicated void space due to non-homogeneous dispersion causing increased oxygen and carbon dioxide permeability. Homogeneous dispersion of fine TiO2 nanoparticles increased mechanical strength and reduced oxygen, carbon dioxide, and water vapor permeability. Films containing TiO2 also showed efficient oxygen-scavenging activity that removed residual oxygen from the package headspace dependent on the levels and morphology of nanoparticles in the film matrices. Banana fruit packaged in films containing TiO2 recorded slower darkening color change and enhanced shelf-life with increasing TiO2 content.

11.
Int J Biol Macromol ; 156: 80-93, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32294497

RESUMEN

Biopolymer blend interactions influence the physical, mechanical and barrier properties of edible packaging. Starch (rice and hydroxypropyl cassava starch mixture), agar and maltodextrin were formulated to control the solubility of edible films. Blend materials were characterized for fluid rheology, solid microstructure, mechanical barrier and physical properties. Agar enhanced solid behavior and governed low temperature gelation of the blends, giving improved film forming ability and hydrophobicity. Flexibility of the films highly depended on integrity of polymer networks. Agar formed continuous networks entangled in starch matrices. Conversely, maltodextrin acted as a filler that reduced mechanical strength at high concentration (>40%) due to interruption of network integrity. Interaction between starch and agar led to poor water solubility that was insignificantly impacted by agar concentration (10% to 30%) due to identical molecular bonding. Maltodextrin produced highly miscible and plasticized starch-agar films and led to reduced mechanical relaxation temperature and shriveling of film structures after mold dipping. Solubility increased linearly with higher maltodextrin concentration. Molecular interaction between maltodextrin and starch/agar matrices insignificantly influenced solubility, while strong interaction between starch and agar highly controlled solubility. Findings clarified the interaction mechanisms and behavior of biological macromolecule materials in fluids and solid matrices for manufacture of edible packaging.


Asunto(s)
Agar/química , Películas Comestibles , Polisacáridos/química , Solubilidad , Almidón/química , Suspensiones/análisis , Suspensiones/química , Ácidos/química , Biopolímeros/química , Análisis Diferencial Térmico , Interacciones Hidrofóbicas e Hidrofílicas , Manihot/química , Fenómenos Mecánicos , Microscopía Electrónica de Rastreo , Oryza/química , Plastificantes/química , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...