Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cogn Affect Behav Neurosci ; 23(3): 600-619, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36823249

RESUMEN

Despite being unpredictable and uncertain, reward environments often exhibit certain regularities, and animals navigating these environments try to detect and utilize such regularities to adapt their behavior. However, successful learning requires that animals also adjust to uncertainty associated with those regularities. Here, we analyzed choice data from two comparable dynamic foraging tasks in mice and monkeys to investigate mechanisms underlying adjustments to different types of uncertainty. In these tasks, animals selected between two choice options that delivered reward probabilistically, while baseline reward probabilities changed after a variable number (block) of trials without any cues to the animals. To measure adjustments in behavior, we applied multiple metrics based on information theory that quantify consistency in behavior, and fit choice data using reinforcement learning models. We found that in both species, learning and choice were affected by uncertainty about reward outcomes (in terms of determining the better option) and by expectation about when the environment may change. However, these effects were mediated through different mechanisms. First, more uncertainty about the better option resulted in slower learning and forgetting in mice, whereas it had no significant effect in monkeys. Second, expectation of block switches accompanied slower learning, faster forgetting, and increased stochasticity in choice in mice, whereas it only reduced learning rates in monkeys. Overall, while demonstrating the usefulness of metrics based on information theory in examining adaptive behavior, our study provides evidence for multiple types of adjustments in learning and choice behavior according to uncertainty in the reward environment.


Asunto(s)
Conducta de Elección , Recompensa , Ratones , Animales , Incertidumbre , Haplorrinos , Aprendizaje , Toma de Decisiones
3.
Cogn Affect Behav Neurosci ; 22(5): 952-968, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35332510

RESUMEN

The anterior cingulate cortex (ACC) has been implicated in a number of functions, including performance monitoring and decision-making involving effort. The prediction of responses and outcomes (PRO) model has provided a unified account of much human and monkey ACC data involving anatomy, neurophysiology, EEG, fMRI, and behavior. We explored the computational nature of ACC with the PRO model, extending it to account specifically for both human and macaque monkey decision-making under risk, including both behavioral and neural data. We show that the PRO model can account for a number of additional effects related to outcome prediction, decision-making under risk, gambling behavior. In particular, we show that the ACC represents the variance of uncertain outcomes, suggesting a link between ACC function and mean-variance theories of decision making. The PRO model provides a unified account of a large set of data regarding the ACC.


Asunto(s)
Juego de Azar , Giro del Cíngulo , Toma de Decisiones/fisiología , Juego de Azar/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal/fisiología
4.
Chaos ; 30(12): 121102, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33380037

RESUMEN

We investigated locking behaviors of coupled limit-cycle oscillators with phase and amplitude dynamics. We focused on how the dynamics are affected by inhomogeneous coupling strength and by angular and radial shifts in coupling functions. We performed mean-field analyses of oscillator systems with inhomogeneous coupling strength, testing Gaussian, power-law, and brain-like degree distributions. Even for oscillators with identical intrinsic frequencies and intrinsic amplitudes, we found that the coupling strength distribution and the coupling function generated a wide repertoire of phase and amplitude dynamics. These included fully and partially locked states in which high-degree or low-degree nodes would phase-lead the network. The mean-field analytical findings were confirmed via numerical simulations. The results suggest that, in oscillator systems in which individual nodes can independently vary their amplitude over time, qualitatively different dynamics can be produced via shifts in the coupling strength distribution and the coupling form. Of particular relevance to information flows in oscillator networks, changes in the non-specific drive to individual nodes can make high-degree nodes phase-lag or phase-lead the rest of the network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...