Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(12): e0167589, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907137

RESUMEN

This study aimed to obtain the coding cDNA sequences of voltage-gated Na+ channel (scn) α-subunit (scna) and ß-subunit (scnb) isoforms from, and to quantify their transcript levels in, the main electric organ (EO), Hunter's EO, Sach's EO and the skeletal muscle (SM) of the electric eel, Electrophorus electricus, which can generate both high and low voltage electric organ discharges (EODs). The full coding sequences of two scna (scn4aa and scn4ab) and three scnb (scn1b, scn2b and scn4b) were identified for the first time (except scn4aa) in E. electricus. In adult fish, the scn4aa transcript level was the highest in the main EO and the lowest in the Sach's EO, indicating that it might play an important role in generating high voltage EODs. For scn4ab/Scn4ab, the transcript and protein levels were unexpectedly high in the EOs, with expression levels in the main EO and the Hunter's EO comparable to those of scn4aa. As the key domains affecting the properties of the channel were mostly conserved between Scn4aa and Scn4ab, Scn4ab might play a role in electrogenesis. Concerning scnb, the transcript level of scn4b was much higher than those of scn1b and scn2b in the EOs and the SM. While the transcript level of scn4b was the highest in the main EO, protein abundance of Scn4b was the highest in the SM. Taken together, it is unlikely that Scna could function independently to generate EODs in the EOs as previously suggested. It is probable that different combinations of Scn4aa/Scn4ab and various Scnb isoforms in the three EOs account for the differences in EODs produced in E. electricus. In general, the transcript levels of various scn isoforms in the EOs and the SM were much higher in adult than in juvenile, and the three EOs of the juvenile fish could be functionally indistinct.


Asunto(s)
Electrophorus/metabolismo , Isoformas de Proteínas/biosíntesis , ARN Mensajero/biosíntesis , Canales de Sodio Activados por Voltaje/biosíntesis , Animales , Órgano Eléctrico/enzimología , Electrophorus/genética , Regulación Enzimológica de la Expresión Génica , Músculo Esquelético/enzimología , Isoformas de Proteínas/genética , Canales de Sodio Activados por Voltaje/genética
2.
PLoS One ; 10(3): e0118352, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793901

RESUMEN

This study aimed to obtain the coding cDNA sequences of Na+/K+-ATPase α (nkaα) isoforms from, and to quantify their mRNA expression in, the skeletal muscle (SM), the main electric organ (EO), the Hunter's EO and the Sach's EO of the electric eel, Electrophorus electricus. Four nkaα isoforms (nkaα1c1, nkaα1c2, nkaα2 and nkaα3) were obtained from the SM and the EOs of E. electricus. Based on mRNA expression levels, the major nkaα expressed in the SM and the three EOs of juvenile and adult E. electricus were nkaα1c1 and nkaα2, respectively. Molecular characterization of the deduced Nkaα1c1 and Nkaα2 sequences indicates that they probably have different affinities to Na+ and K+. Western blotting demonstrated that the protein abundance of Nkaα was barely detectable in the SM, but strongly detected in the main and Hunter's EOs and weakly in the Sach's EO of juvenile and adult E. electricus. These results corroborate the fact that the main EO and Hunter's EO have high densities of Na+ channels and produce high voltage discharges while the Sach's EO produces low voltage discharges. More importantly, there were significant differences in kinetic properties of Nka among the three EOs of juvenile E. electricus. The highest and lowest Vmax of Nka were detected in the main EO and the Sach's EO, respectively, with the Hunter's EO having a Vmax value intermediate between the two, indicating that the metabolic costs of EO discharge could be the highest in the main EO. Furthermore, the Nka from the main EO had the lowest Km (or highest affinity) for Na+ and K+ among the three EOs, suggesting that the Nka of the main EO was more effective than those of the other two EOs in maintaining intracellular Na+ and K+ homeostasis and in clearing extracellular K+ after EO discharge.


Asunto(s)
Órgano Eléctrico/enzimología , Electrophorus/metabolismo , Regulación Enzimológica de la Expresión Génica , Músculo Esquelético/enzimología , ATPasa Intercambiadora de Sodio-Potasio/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Electrophorus/genética , Cinética , Datos de Secuencia Molecular , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-25575738

RESUMEN

Homocysteine accumulation has numerous deleterious effects, and betaine-homocysteine S-methyltransferase (BHMT) catalyses the synthesis of methionine from homocysteine and betaine. This study aimed to determine homocysteine concentrations, and mRNA expression levels and protein abundances of bhmt1/Bhmt1 in the liver, kidney and muscle of the African lungfish, Protopterus annectens, during the induction (6 days), maintenance (6 months) or arousal (3 days after arousal) phase of aestivation. The homocysteine concentration decreased significantly in the liver of P. annectens after 6 days or 6 months of aestivation, but it returned to the control level upon arousal. By contrast, homocysteine concentrations in the kidney and muscle remained unchanged during the three phases of aestivation. The complete coding cDNA sequence of bhmt1 from P. annectens consisted of 1236 bp, coding for 412 amino acids. The Bhmt1 from P. annectens had a close phylogenetic relationship with those from tetrapods and Callorhinchus milii. The expression of bhmt1 was detected in multiple organs/tissues of P. annectens, and this is the first report on the expression of bhmt1/Bhmt1 in animal skeletal muscle. The mRNA and protein expression levels of bhmt1/Bhmt1 were up-regulated in the liver of P. annectens during the induction and maintenance phases of aestivation, possibly to regulate the hepatic homocysteine concentration. The significant increase in hepatic Bhmt1 protein abundance during the arousal phase could be a response to increased cellular methylation for the purpose of tissue reconstruction. Unlike the liver, Bhmt1 expression in the kidney and muscle of P. annectens was regulated translationally, and its up-regulation could be crucial to prevent homocysteine accumulation.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/metabolismo , Estivación , Peces/fisiología , Homocisteína/química , Hígado/metabolismo , ARN Mensajero/metabolismo , Animales , Secuencia de Bases , Betaína-Homocisteína S-Metiltransferasa/genética , Peces/genética , Riñón/química , Riñón/metabolismo , Hígado/química , Datos de Secuencia Molecular , Músculos/química , Músculos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...