Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 33: 101420, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36654922

RESUMEN

Epigenetic repression has been linked to the regulation of different cell states. In this study, we focus on the influence of this repression, mainly by H3K27me3, over gene expression in muscle cells, which may affect mineral content, a phenotype that is relevant to muscle function and beef quality. Based on the inverse relationship between H3K27me3 and gene expression (i.e., epigenetic repression) and on contrasting sample groups, we computationally predicted regulatory genes that affect muscle mineral content. To this end, we applied the TRIAGE predictive method followed by a rank product analysis. This methodology can predict regulatory genes that might be affected by repressive epigenetic regulation related to mineral concentration. Annotation of orthologous genes, between human and bovine, enabled our investigation of gene expression in the Longissimus thoracis muscle of Bos indicus cattle. The animals under study had a contrasting mineral content in their muscle cells. We identified candidate regulatory genes influenced by repressive epigenetic mechanisms, linking histone modification to mineral content in beef samples. The discovered candidate genes take part in multiple biological pathways, i.e., impulse transmission, cell signalling, immunological, and developmental pathways. Some of these genes were previously associated with mineral content or regulatory mechanisms. Our findings indicate that epigenetic repression can partially explain the gene expression profiles observed in muscle samples with contrasting mineral content through the candidate regulators here identified.

2.
ISME J ; 4(8): 989-1001, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20357834

RESUMEN

The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Caryophyllaceae/microbiología , Poaceae/microbiología , Microbiología del Suelo , Regiones Antárticas , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA