Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316430

RESUMEN

Plutonium has potential applications in energy production in well-controlled nuclear reactors. Since nuclear power plants have great merit as environmentally friendly energy sources with a recyclable system, a recycling system for extracting Pu from spent fuels using suitable extractants has been proposed. Pu leakage is a potential environmental hazard, hence the need for chemical sensor development. Both extractants and chemical sensors involve metal-ligand interactions and to develop efficient extractants and chemical sensors, structural information about Pu ligands must be obtained by quantum calculations. Herein, six representative nitrogen tridentate ligands were introduced, and their binding stabilities were evaluated. The tridentate L6, which contains tri-pyridine chelate with benzene connectors, showed the highest binding energies for Pu(IV) and PuO2(VI) in water. Analysis based on the quantum theory of atoms in molecular analysis, including natural population analysis and electron density studies, provided insight into the bonding characteristics for each structure. We propose that differences in ionic bonding characteristics account for the Pu-ligand stability differences. These results form a basis for designing novel extractants and organic Pu sensors.


Asunto(s)
Nitrógeno/química , Óxidos/química , Plutonio/química , Ligandos , Conformación Molecular , Estructura Molecular , Plantas de Energía Nuclear , Teoría Cuántica , Agua/química
2.
Materials (Basel) ; 12(10)2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100956

RESUMEN

In recent years, nano-reinforcing technologies for cementitious materials have attracted considerable interest as a viable solution for compensating the poor cracking resistance of these materials. In this study, for the first time, titanium nanotubes (TNTs) were incorporated in cement pastes and their effect on the mechanical properties, microstructure, and early-age hydration kinetics was investigated. Experimental results showed that both compressive (~12%) and flexural strength (~23%) were enhanced with the addition of 0.5 wt.% of TNTs relative to plain cement paste at 28 days of curing. Moreover, it was found that, while TNTs accelerated the hydration kinetics of the pure cement clinker phase (C3S) in the early age of the reaction (within 24 h), there was no significant effect from adding TNTs on the hydration of ordinary Portland cement. TNTs appeared to compress the microstructure by filling the cement paste pore of sizes ranging from 10 to 100 nm. Furthermore, it could be clearly observed that the TNTs bridged the microcracks of cement paste. These results suggested that TNTs could be a great potential candidate since nano-reinforcing agents complement the shortcomings of cementitious materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA