Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Dis Model Mech ; 16(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942584

RESUMEN

Sepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2. To better model the intact kidney, we cultured human kidney organoids derived from induced pluripotent stem cells. We treated human kidney organoids grown using both three-dimensional and transwell protocols with CFH for 48 h. We found evidence for increased tubular toxicity, oxidative stress, mitochondrial fragmentation, endothelial cell injury and injury-associated transcripts compared to those of the untreated control group. To evaluate the protective effect of clinically available small molecules, we co-treated CFH-injured organoids with ascorbate (vitamin C) or acetaminophen for 48 h. We found significantly decreased toxicity, preservation of endothelial cells and reduced mitochondrial fragmentation in the group receiving ascorbate following CFH treatment. This study provides direct evidence that ascorbate or ascorbic acid protects human kidney cells from CFH-induced damage such as that in sepsis-associated acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Sepsis , Humanos , Células Endoteliales/metabolismo , Riñón/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Hemoglobinas/farmacología , Hemoglobinas/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Lesión Renal Aguda/tratamiento farmacológico
2.
World J Stem Cells ; 15(6): 530-547, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37424945

RESUMEN

Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer's disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.

3.
Tissue Eng Part A ; 29(13-14): 372-383, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37130035

RESUMEN

Urine-derived stem cells (USCs) are adult kidney cells that have been isolated from a urine sample and propagated in tissue culture on gelatin-coated plates. Urine is a practical and completely painless source of cells for gene and cell therapy applications. We have isolated, expanded, and optimized transfection of USCs to develop regenerative therapies based on piggyBac transposon modification. USCs from a healthy donor sample were isolated according to established protocols. Within 2 months, 10 clones had been expanded, analyzed, and frozen. Fluorescence-activated cell sorting analysis of individual clones revealed that all 10 clones expressed characteristic USC markers (97-99% positive for CD44, CD73, CD90, and CD146; negative for CD31, CD34, and CD45). The isolated USCs were successfully differentiated along the osteogenic, adipogenic, and chondrogenic lineages, suggesting multipotent differentiation capacity. Additionally, the USCs were differentiated into podocytes positive for NEPHRIN (NPHS1), podocalyxin, and Wilms tumor 1 (WT1). Transfection of USCs with a strongly expressing Green fluorescent protein plasmid was optimized to achieve 61% efficiency in live cells using several commercially available lipophilic reagents. Transgene promoters were compared in five luciferase-expressing piggyBac transposons by live animal imaging. The CMV promoter produced the highest luciferase signal, followed by EF1-α. Finally, HEK-293 and USCs were transfected with piggyBac transposons expressing lactoferrin and DNase1 for treatment of acute kidney injury associated with rhabdomyolysis. We found that both proteins were expressed in USCs and that lactoferrin was successfully secreted into the cell culture media. In conclusion, USCs represent a clinically relevant cell type that can express nonviral transgenes. Impact statement Acute kidney injury (AKI) affects over 13 million people worldwide each year, with hospitalization rates on the rise. There are no therapies that directly regenerate the kidney after AKI. Each human kidney contains approximately one million nephrons that process ∼100 L of urinary filtrate each day. Thousands of kidney cells become detached and are excreted in the urine. A small percentage of these cells can be clonally derived into urine-derived stem cells. We have optimized methods for genome engineering of adult human urine-derived stem cells for future applications in regenerative approaches to treat kidney injury.


Asunto(s)
Lesión Renal Aguda , Lactoferrina , Adulto , Animales , Humanos , Lactoferrina/genética , Células HEK293 , Células Madre , Diferenciación Celular , Desoxirribonucleasas/metabolismo
4.
Stem Cell Res Ther ; 13(1): 355, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883199

RESUMEN

BACKGROUND: In diabetic kidney disease, high glucose damages specialized cells called podocytes that filter blood in the glomerulus. In vitro culture of podocytes is crucial for modeling of diabetic nephropathy and genetic podocytopathies and to complement animal studies. Recently, several methods have been published to derive podocytes from human-induced pluripotent stem cells (iPSCs) by directed differentiation. However, these methods have major variations in media composition and have not been compared. METHODS: We characterized our accelerated protocol by guiding the cells through differentiation with four different medias into MIXL1+ primitive streak cells with Activin A and CHIR for Wnt activation, intermediate mesoderm PAX8+ cells via increasing the CHIR concentration, nephron progenitors with FGF9 and Heparin for stabilization, and finally into differentiated podocytes with Activin A, BMP-7, VEGF, reduced CHIR, and retinoic acid. The podocyte morphology was characterized by scanning and transmission electron microscopy and by flow cytometry analysis for podocyte markers. To confirm cellular identity and niche localization, we performed cell recombination assays combining iPSC-podocytes with dissociated mouse embryonic kidney cells. Finally, to test iPSC-derived podocytes for the modeling of diabetic kidney disease, human podocytes were exposed to high glucose. RESULTS: Podocyte markers were expressed at similar or higher levels for our accelerated protocol as compared to previously published protocols that require longer periods of tissue culture. We confirmed that the human podocytes derived from induced pluripotent stem cells in twelve days integrated into murine glomerular structures formed following seven days of culture of cellular recombinations. We found that the high glucose-treated human podocytes displayed actin rearrangement, increased cytotoxicity, and decreased viability. CONCLUSIONS: We found that our accelerated 12-day method for the differentiation of podocytes from human-induced pluripotent stem cells yields podocytes with comparable marker expression to longer podocytes. We also demonstrated that podocytes created with this protocol have typical morphology by electron microscopy. The podocytes have utility for diabetes modeling as evidenced by lower viability and increased cytotoxicity when treated with high glucose. We found that multiple, diverse methods may be utilized to create iPSC-podocytes, but closely mimicking developmental cues shortened the time frame required for differentiation.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Células Madre Pluripotentes Inducidas , Podocitos , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Glomérulos Renales/metabolismo , Ratones , Podocitos/metabolismo
5.
J Am Soc Nephrol ; 33(3): 487-501, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35031569

RESUMEN

AKI affects approximately 13.3 million people around the world each year, causing CKD and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available. Human kidney tissue culture systems can complement animal models of AKI and/or address some of their limitations. Donor-derived somatic cells, such as renal tubule epithelial cells or cell lines (RPTEC/hTERT, ciPTEC, HK-2, Nki-2, and CIHP-1), have been used for decades to permit drug toxicity screening and studies into potential AKI mechanisms. However, tubule cell lines do not fully recapitulate tubular epithelial cell properties in situ when grown under classic tissue culture conditions. Improving tissue culture models of AKI would increase our understanding of the mechanisms, leading to new therapeutics. Human pluripotent stem cells (hPSCs) can be differentiated into kidney organoids and various renal cell types. Injury to human kidney organoids results in renal cell-type crosstalk and upregulation of kidney injury biomarkers that are difficult to induce in primary tubule cell cultures. However, current protocols produce kidney organoids that are not mature and contain off-target cell types. Promising bioengineering techniques, such as bioprinting and "kidney-on-a-chip" methods, as applied to kidney nephrotoxicity modeling advantages and limitations are discussed. This review explores the mechanisms and detection of AKI in tissue culture, with an emphasis on bioengineered approaches such as human kidney organoid models.


Asunto(s)
Lesión Renal Aguda , Células Madre Pluripotentes , Lesión Renal Aguda/metabolismo , Animales , Femenino , Humanos , Riñón/metabolismo , Masculino , Mamíferos , Nefronas/metabolismo , Organoides/metabolismo
6.
Regul Toxicol Pharmacol ; 125: 105006, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34273441

RESUMEN

The ICH M7 (R1) guideline recommends the use of complementary (Q)SAR models to assess the mutagenic potential of drug impurities as a state-of-the-art, high-throughput alternative to empirical testing. Additionally, it includes a provision for the application of expert knowledge to increase prediction confidence and resolve conflicting calls. Expert knowledge, which considers structural analogs and mechanisms of activity, has been valuable when models return an indeterminate (equivocal) result or no prediction (out-of-domain). A retrospective analysis of 1002 impurities evaluated in drug regulatory applications between April 2017 and March 2019 assessed the impact of expert review on (Q)SAR predictions. Expert knowledge overturned the default predictions for 26% of the impurities and resolved 91% of equivocal predictions and 75% of out-of-domain calls. Of the 261 overturned default predictions, 15% were upgraded to equivocal or positive and 79% were downgraded to equivocal or negative. Chemical classes with the most overturns were primary aromatic amines (46%), aldehydes (45%), Michael-reactive acceptors (37%), and non-primary alkyl halides (33%). Additionally, low confidence predictions were the most often overturned. Collectively, the results suggest that expert knowledge continues to play an important role in an ICH M7 (Q)SAR prediction workflow and triaging predictions based on chemical class and probability can improve (Q)SAR review efficiency.


Asunto(s)
Contaminación de Medicamentos , Mutágenos/química , Relación Estructura-Actividad Cuantitativa , Simulación por Computador , Pruebas de Mutagenicidad , Estudios Retrospectivos , Medición de Riesgo
7.
Plasmid ; 114: 102554, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33476638

RESUMEN

TcBuster is a hAT-family DNA transposon from the red flour beetle, Tribolium castaneum. The TcBuster transposase is of interest for genome engineering as it is highly active in insect and mammalian cells. To test the predicted catalytic triad of TcBuster, each residue of the catalytic triad of a haemagglutinin-tagged TcBuster transposase was individually mutated to a structurally conserved amino acid. Using a drug-resistant colony assay for transposon integration, we found that the D223N, D289N, and E589Q mutants of TcBuster transposase were inactive in human cells. We used a modified chromatin immunoprecipitation assay to determine that each mutant maintained binding to TcBuster transposon inverted repeat elements. Although the catalytic mutants retained their transposon binding properties, mutants displayed altered expression and localization in human cells. None of the catalytic mutants formed characteristic TcBuster transposase rodlet structures, and the D223N and D289N mutants were not able to be detected by immunofluorescence microscopy. Immunoblot analysis demonstrated that the E589Q mutant is less abundant than wild-type TcBuster transposase. Cells transfected with either TcBuster or TcBuster-E589Q transposase were imaged by structured illumination microscopy to quantify differences in the length of the transposase rodlets. The average length of the TcBuster transposase rodlets (N = 39) was 3.284 µm while the E589Q rodlets (N = 33) averaged 1.157 µm (p < 0.0001; t-test). The catalytic triad mutations decreased overall protein levels and disrupted transposase rodlet formation while nuclear localization and DNA binding to the inverted repeat elements were maintained. Our results may have broader implications for the overproduction inhibition phenomenon observed for DNA transposons.


Asunto(s)
Elementos Transponibles de ADN , Transposasas , Animales , Humanos , Mutación , Plásmidos , Transposasas/genética , Transposasas/metabolismo
8.
Genesis ; 58(5): e23357, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32078250

RESUMEN

Cystinuria Type A is a relatively common genetic kidney disease occurring in 1 in 7,000 people worldwide that results from mutation of the cystine transporter rBAT encoded by Slc3a1. We used CRISPR/Cas9 technology to engineer cystinuria Type A mice via genome editing of the C57BL/6NHsd background. These mice are an improvement on currently available models as they are on a coisogenic genetic background and have a single defined mutation. In order to use albinism to track Cas9 activity, we co-injected gRNAs targeting Slc3a1 and tyrosinase (Tyr) with Cas9 expressing plasmid DNA into mouse embryos. Two different Slc3a1 mutational alleles were derived, with homozygous mice of both demonstrating elevated urinary cystine levels, cystine crystals, and bladder stones. We used whole genome sequencing to evaluate for potential off-target editing. No off-target indels were observed for the top 10 predicted off-targets for Slc3a1 or Tyr. Therefore, we used CRISPR/Cas9 to generate coisogenic albino cystinuria Type A mice that could be used for in vivo imaging, further study, or developing new treatments of cystinuria.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinuria/genética , Mutación , Animales , Sistemas CRISPR-Cas , Cisteína/orina , Cistinuria/patología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL
9.
BMC Nephrol ; 20(1): 227, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31221135

RESUMEN

BACKGROUND: Cystinuria is an inherited disorder of renal amino acid transport that causes recurrent nephrolithiasis and significant morbidity in humans. It has an incidence of 1 in 7000 worldwide making it one of the most common genetic disorders in man. We phenotypically characterized a mouse model of cystinuria type A resultant from knockout of Slc3a1. METHODS: Knockout of Slc3a1 at RNA and protein levels was evaluated using real-time quantitative PCR and immunofluorescence. Slc3a1 knockout mice were placed on normal or breeder chow diets and evaluated for cystine stone formation over time suing x-ray analysis, and the development of kidney injury by measuring injury biomarkers. Kidney injury was also evaluated via histologic analysis. Amino acid levels were measured in the blood of mice using high performance liquid chromatography. Liver glutathione levels were measured using a luminescent-based assay. RESULTS: We confirmed knockout of Slc3a1 at the RNA level, while Slc7a9 RNA representing the co-transporter was preserved. As expected, we observed bladder stone formation in Slc3a1-/- mice. Male Slc3a1-/- mice exhibited lower weights compared to Slc3a1+/+. Slc3a1-/- mice on a regular diet demonstrated elevated blood urea nitrogen (BUN) without elevation of serum creatinine. However, placing the knockout animals on a breeder chow diet, containing a higher cystine concentration, resulted in the development of elevation of both BUN and creatinine indicative of more severe chronic kidney disease. Histological examination revealed that these dietary effects resulted in worsened kidney tubular obstruction and interstitial inflammation as well as worsened bladder inflammation. Cystine is a precursor for the antioxidant molecule glutathione, so we evaluated glutathione levels in the livers of Slc3a1-/- mice. We found significantly lowered levels of both reduced and total glutathione in the knockout animals. CONCLUSIONS: Our results suggest that that diet can affect the development and progression of chronic kidney disease in an animal model of cystinuria, which may have important implications for patients with this disease. Additionally, reduced glutathione may predispose those with cystinuria to injury caused by oxidative stress. Word count: 327.


Asunto(s)
Nitrógeno de la Urea Sanguínea , Cistinuria/diagnóstico por imagen , Cistinuria/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/deficiencia , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/deficiencia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Cistinuria/genética , Femenino , Masculino , Ratones , Ratones Noqueados
10.
Kidney Int ; 95(5): 1153-1166, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30827514

RESUMEN

All nephrons in the mammalian kidney arise from a transient nephron progenitor population that is lost close to the time of birth. The generation of new nephron progenitors and their maintenance in culture are central to the success of kidney regenerative strategies. Using a lentiviral screening approach, we previously generated a human induced nephron progenitor-like state in vitro using a pool of six transcription factors. Here, we sought to develop a more efficient approach for direct reprogramming of human cells that could be applied in vivo. PiggyBac transposons are a non-viral integrating gene delivery system that is suitable for in vivo use and allows for simultaneous delivery of multiple genes. Using an inducible piggyBac transposon system, we optimized a protocol for the direct reprogramming of HK2 cells to induced nephron progenitor-like cells with expression of only 3 transcription factors (SNAI2, EYA1, and SIX1). Culture in conditions supportive of the nephron progenitor state further increased the expression of nephron progenitor genes. The refined protocol was then applied to primary human renal epithelial cells, which integrated into developing nephron structures in vitro and in vivo. Such inducible reprogramming to nephron progenitor-like cells could facilitate direct cellular reprogramming for kidney regeneration.


Asunto(s)
Reprogramación Celular/genética , Elementos Transponibles de ADN/genética , Ingeniería Genética/métodos , Nefronas/fisiología , Regeneración/genética , Células Cultivadas , Técnicas de Transferencia de Gen , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Cultivo Primario de Células , Proteínas Tirosina Fosfatasas/genética , Factores de Transcripción de la Familia Snail/genética
11.
Sci Rep ; 8(1): 12706, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30139940

RESUMEN

Magnetic iron oxide nanoparticles (MIONs) have established a niche as a nanomedicine platform for diagnosis and therapy, but they present a challenging surface for ligand functionalization which limits their applications. On the other hand, coating MIONs with another material such as gold to enhance these attachments introduces other complications. Incomplete coating may expose portions of the iron oxide core, or the coating process may alter their magnetic properties. We describe synthesis and characterization of iron oxide/silica/gold core-shell nanoparticles to elucidate the effects of a silica-gold coating process and its impact on the resulting performance. In particular, small angle neutron scattering reveals silica intercalates between iron oxide crystallites that form the dense core, likely preserving the magnetic properties while enabling formation of a continuous gold shell. The synthesized silica-gold-coated MIONs demonstrate magnetic heating properties consistent with the original iron oxide core, with added x-ray contrast for imaging and laser heating.


Asunto(s)
Medios de Contraste/química , Compuestos Férricos/química , Nanopartículas/química , Oro/química , Magnetismo , Nanomedicina/métodos , Dióxido de Silicio/química
12.
Nat Commun ; 9(1): 1325, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636469

RESUMEN

A cell therapy platform permitting long-term delivery of peptide hormones in vivo would be a significant advance for patients with hormonal deficiencies. Here we report the utility of antigen-specific T lymphocytes as a regulatable peptide delivery platform for in vivo therapy. piggyBac transposon modification of murine cells with luciferase allows us to visualize T cells after adoptive transfer. Vaccination stimulates long-term T-cell engraftment, persistence, and transgene expression enabling detection of modified cells up to 300 days after adoptive transfer. We demonstrate adoptive transfer of antigen-specific T cells expressing erythropoietin (EPO) elevating the hematocrit in mice for more than 20 weeks. We extend our observations to human T cells demonstrating inducible EPO production from Epstein-Barr virus (EBV) antigen-specific T lymphocytes. Our results reveal antigen-specific T lymphocytes to be an effective delivery platform for therapeutic molecules such as EPO in vivo, with important implications for other diseases that require peptide therapy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Elementos Transponibles de ADN/inmunología , Eritropoyetina/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Traslado Adoptivo , Animales , Ingeniería Celular/métodos , Eritropoyetina/inmunología , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hematopoyesis/efectos de los fármacos , Hematopoyesis/inmunología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Ratones , Ovalbúmina/administración & dosificación , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/citología , Linfocitos T/trasplante , Transgenes , Vacunación
13.
J Vis Exp ; (131)2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29364221

RESUMEN

Hydrodynamic injection creates a local, high-pressure environment to transfect various tissues with plasmid DNA and other substances. Hydrodynamic tail vein injection, for example, is a well-established method by which the liver can be transfected. This manuscript describes an application of hydrodynamic principles by injection of the mouse kidney directly with plasmid DNA for kidney-specific gene expression. Mice are anesthetized and the kidney is exposed by a flank incision followed by a fast injection of a plasmid DNA-containing solution directly into the renal pelvis. The needle is kept in place for ten seconds and the incision site is sutured. The following day, live animal imaging, Western blot, or immunohistochemistry may be used to assay gene expression, or other assays suited to the transgene of choice are used for detection of the protein of interest. Published methods to prolong gene expression include transposon-mediated transgene integration and cyclophosphamide treatment to inhibit the immune response to the transgene.


Asunto(s)
ADN/administración & dosificación , Pelvis Renal/fisiología , Riñón/fisiología , Plásmidos/administración & dosificación , Biosíntesis de Proteínas/genética , Transfección/métodos , Animales , ADN/genética , Hidrodinámica , Inyecciones , Riñón/metabolismo , Masculino , Ratones , Plásmidos/genética , Transgenes
14.
Nucleic Acids Res ; 45(14): 8411-8422, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28666380

RESUMEN

Integrating DNA delivery systems hold promise for many applications including treatment of diseases; however, targeted integration is needed for improved safety. The piggyBac (PB) transposon system is a highly active non-viral gene delivery system capable of integrating defined DNA segments into host chromosomes without requiring homologous recombination. We systematically compared four different engineered zinc finger proteins (ZFP), four transcription activator-like effector proteins (TALE), CRISPR associated protein 9 (SpCas9) and the catalytically inactive dSpCas9 protein fused to the amino-terminus of the transposase enzyme designed to target the hypoxanthine phosphoribosyltransferase (HPRT) gene located on human chromosome X. Chimeric transposases were evaluated for expression, transposition activity, chromatin immunoprecipitation at the target loci, and targeted knockout of the HPRT gene in human cells. One ZFP-PB and one TALE-PB chimera demonstrated notable HPRT gene targeting. In contrast, Cas9/dCas9-PB chimeras did not result in gene targeting. Instead, the HPRT locus appeared to be protected from transposon integration. Supplied separately, PB permitted highly efficient isolation of Cas9-mediated knockout of HPRT, with zero transposon integrations in HPRT by deep sequencing. In summary, these tools may allow isolation of 'targeted-only' cells, be utilized to protect a genomic locus from transposon integration, and enrich for Cas9-mutated cells.


Asunto(s)
Técnicas de Inactivación de Genes/métodos , Marcación de Gen/métodos , Técnicas de Transferencia de Gen , Mutagénesis Insercional/métodos , Proteínas Bacterianas/genética , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Elementos Transponibles de ADN/genética , Endonucleasas/genética , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Proteínas Recombinantes de Fusión/genética , Reproducibilidad de los Resultados , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Efectores Tipo Activadores de la Transcripción/genética , Transposasas/genética , Dedos de Zinc/genética
15.
Sci Rep ; 7: 44904, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28317878

RESUMEN

Methods enabling kidney-specific gene transfer in adult mice are needed to develop new therapies for kidney disease. We attempted kidney-specific gene transfer following hydrodynamic tail vein injection using the kidney-specific podocin and gamma-glutamyl transferase promoters, but found expression primarily in the liver. In order to achieve kidney-specific transgene expression, we tested direct hydrodynamic injection of a DNA solution into the renal pelvis and found that luciferase expression was strong in the kidney and absent from extra-renal tissues. We observed heterogeneous, low-level transfection of the collecting duct, proximal tubule, distal tubule, interstitial cells, and rarely glomerular cells following injection. To assess renal injury, we performed the renal pelvis injections on uninephrectomised mice and found that their blood urea nitrogen was elevated at two days post-transfer but resolved within two weeks. Although luciferase expression quickly decreased following renal pelvis injection, the use of the piggyBac transposon system improved long-term expression. Immunosuppression with cyclophosphamide stabilised luciferase expression, suggesting immune clearance of the transfected cells occurs in immunocompetent animals. Injection of a transposon expressing erythropoietin raised the haematocrit, indicating that the developed injection technique can elicit a biologic effect in vivo. Hydrodynamic renal pelvis injection enables transposon mediated-kidney specific gene transfer in adult mice.


Asunto(s)
Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Riñón/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Animales , Eritropoyetina/genética , Eritropoyetina/metabolismo , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Hidrodinámica , Inmunosupresores/farmacología , Riñón/patología , Masculino , Ratones , Especificidad de Órganos , Regiones Promotoras Genéticas , Transfección/métodos
16.
Nucleic Acids Res ; 45(1): 353-366, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-27899587

RESUMEN

Transposons are highly abundant in eukaryotic genomes, but their mobilization must be finely tuned to maintain host organism fitness and allow for transposon propagation. Forty percent of the human genome is comprised of transposable element sequences, and the most abundant cut-and-paste transposons are from the hAT superfamily. We found that the hAT transposase TcBuster from Tribolium castaneum formed filamentous structures, or rodlets, in human tissue culture cells, after gene transfer to adult mice, and ex vivo in cell-free conditions, indicating that host co-factors or cellular structures were not required for rodlet formation. Time-lapsed imaging of GFP-laced rodlets in human cells revealed that they formed quickly in a dynamic process involving fusion and fission. We delayed the availability of the transposon DNA and found that transposition declined after transposase concentrations became high enough for visible transposase rodlets to appear. In combination with earlier findings for maize Ac elements, these results give insight into transposase overproduction inhibition by demonstrating that the appearance of transposase protein structures and the end of active transposition are simultaneous, an effect with implications for genetic engineering and horizontal gene transfer.


Asunto(s)
Elementos Transponibles de ADN , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Transposasas/genética , Animales , Femenino , Genes Reporteros , Células HEK293 , Células HeLa , Humanos , Proteínas de Insectos/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Ratones , Imagen Óptica , Imagen de Lapso de Tiempo , Transposasas/metabolismo , Tribolium
17.
Trends Biotechnol ; 33(9): 525-33, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26211958

RESUMEN

DNA transposons offer an efficient nonviral method of permanently modifying the genomes of mammalian cells. The piggyBac transposon system has proven effective in genomic engineering of mammalian cells for preclinical applications, including gene discovery, simultaneous multiplexed genome modification, animal transgenesis, gene transfer in vivo achieving long-term gene expression in animals, and the genetic modification of clinically relevant cell types, such as induced pluripotent stem cells and human T lymphocytes. piggyBac has many desirable features, including seamless excision of transposons from the genomic DNA and the potential to target integration events to desired DNA sequences. In this review, we explore these recent applications and also highlight the unique advantages of using piggyBac for developing new molecular therapeutic strategies.


Asunto(s)
Baculoviridae/genética , Ingeniería Genética , Vectores Genéticos/genética , Genoma/genética , Animales , Humanos , Ratones
18.
Am J Pathol ; 185(5): 1234-50, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25783760

RESUMEN

Insulin-like growth factor-1 receptor (IGF-1R) can regulate vascular homeostasis and endothelial function. We studied the role of IGF-1R in oxidative stress-induced endothelial dysfunction. Unilateral ureteral obstruction (UUO) was performed in wild-type (WT) mice and mice with endothelial cell (EC)-specific IGF-1R knockout (KO). After UUO in endothelial IGF-1R KO mice, endothelial barrier dysfunction was more severe than in WT mice, as seen by increased inflammatory cell infiltration and vascular endothelial (VE)-cadherin phosphorylation. UUO in endothelial IGF-1R KO mice increased interstitial fibroblast accumulation and enhanced extracellular protein deposition as compared with the WT mice. Endothelial barrier function measured by transendothelial migration in response to hydrogen peroxide (H2O2) was impaired in ECs. Silencing IGF-1R enhanced the influence of H2O2 in disrupting the VE-protein tyrosine phosphatase/VE-cadherin interaction. Overexpression of IGF-1R suppressed H2O2-induced endothelial barrier dysfunction. Furthermore, by using the piggyBac transposon system, we expressed IGF-1R in VE cells in mice. The expression of IGF-1R in ECs also suppressed the inflammatory cell infiltration and renal fibrosis induced by UUO. IGF-1R KO in the VE-cadherin lineage of bone marrow cells had no significant effect on the UUO-induced fibrosis, as compared with control mice. Our results indicate that IGF-1R in the endothelium maintains the endothelial barrier function by stabilization of the VE-protein tyrosine phosphatase/VE-cadherin complex. Decreased expression of IGF-1R impairs endothelial function and increases the fibrosis of kidney disease.


Asunto(s)
Células Endoteliales/metabolismo , Receptor IGF Tipo 1/metabolismo , Insuficiencia Renal Crónica/metabolismo , Animales , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis/patología , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa , Insuficiencia Renal Crónica/patología , Transfección , Venas Umbilicales , Obstrucción Ureteral
19.
Nucleic Acids Res ; 43(3): 1770-82, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25605795

RESUMEN

Non-viral transposons have been used successfully for genetic modification of clinically relevant cells including embryonic stem, induced pluripotent stem, hematopoietic stem and primary human T cell types. However, there has been limited evaluation of undesired genomic effects when using transposons for human genome modification. The prevalence of piggyBac(PB)-like terminal repeat (TR) elements in the human genome raises concerns. We evaluated if there were undesired genomic effects of the PB transposon system to modify human cells. Expression of the transposase alone revealed no mobilization of endogenous PB-like sequences in the human genome and no increase in DNA double-strand breaks. The use of PB in a plasmid containing both transposase and transposon greatly increased the probability of transposase integration; however, using transposon and transposase from separate vectors circumvented this. Placing a eGFP transgene within transposon vector backbone allowed isolation of cells free from vector backbone DNA. We confirmed observable directional promoter activity within the 5'TR element of PB but found no significant enhancer effects from the transposon DNA sequence. Long-term culture of primary human cells modified with eGFP-transposons revealed no selective growth advantage of transposon-harboring cells. PB represents a promising vector system for genetic modification of human cells with limited undesired genomic effects.


Asunto(s)
Cromosomas Artificiales Bacterianos , Elementos Transponibles de ADN , Genoma Humano , Regiones no Traducidas 5' , Daño del ADN , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Plásmidos , Reacción en Cadena de la Polimerasa , Transgenes , Transposasas/metabolismo
20.
Nucl Med Biol ; 41(7): 552-61, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25038987

RESUMEN

Over-expression of chemokine receptor 4 (CXCR4) is present in a majority of cancers, has been linked to an aggressive phenotype, and may indicate the metastatic potential of primary tumor. Several CXCR4 targeted therapeutics are in clinical trials and the development of the corresponding imaging agents is an area of active interest. Previously, (64)Cu-labeled imaging agents for CXCR4 have provided clear images of CXCR4-bearing tissues in relevant experimental models but demonstrated fast washout from tissues harboring receptor. Addition of stabilizing bridges is known to provide more robust chelator-Cu(II) complexes. In addition, bridged cyclam-based CXCR4 binding agents demonstrated increased receptor residence times relative to existing agents. Based on that knowledge we synthesized several bridged cyclam analogs of AMD3465, a monocyclam-based CXCR4 imaging agent, to increase the retention time of the tracer bound to the receptor to allow for protracted imaging and improved target-to-non-target ratios. Specific accumulation of two radiolabeled, cross-bridged analogs ([(64)Cu] RAD1-24 and [(64)Cu]RAD1-52) was observed in U87-stb-CXCR4 tumors in both PET/CT imaging and biodistribution studies. At 90min post-injection of radiotracer, tumor-to-muscle and tumor-to-blood ratios reached 106.05±17.19 and 28.08±4.78, respectively, for cross-bridged pyrimidine analog [(64)Cu]RAD1-52. Receptor blockade performed in vivo denoted target binding specificity. The biodistribution and PET/CT imaging studies with the radiolabeled bridged cyclams demonstrated longer tumor retention and comparable uptake to [(64)Cu]AMD3465, though [(64)Cu]AMD3465 demonstrated superior overall pharmacokinetics.


Asunto(s)
Lactamas Macrocíclicas/química , Tomografía de Emisión de Positrones/métodos , Receptores CXCR4/metabolismo , Tomografía Computarizada por Rayos X/métodos , Animales , Unión Competitiva , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Lactamas Macrocíclicas/metabolismo , Lactamas Macrocíclicas/farmacocinética , Ratones , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...