Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
FASEB Bioadv ; 1(8): 498-510, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31825015

RESUMEN

Podocytes are key cells in maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Glycogen synthase kinase 3 (GSK3) is a multi-functional serine/threonine kinase existing as two distinct but related isoforms (α and ß). In the podocyte it has previously been reported that inhibition of the ß isoform is beneficial in attenuating a variety of glomerular disease models but loss of both isoforms is catastrophic. However, it is not known what the role of GSK3α is in these cells. We now show that GSK3α is present and dynamically modulated in podocytes. When GSK3α is transgenically knocked down specifically in the podocytes of mice it causes mild but significant albuminuria by 6-weeks of life. Its loss also does not protect in models of diabetic or Adriamycin-induced nephropathy. In vitro deletion of podocyte GSK3α causes cell death and impaired autophagic flux suggesting it is important for this key cellular process. Collectively this work shows that GSK3α is important for podocyte health and that augmenting its function may be beneficial in treating glomerular disease.

2.
Nat Commun ; 10(1): 403, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679422

RESUMEN

Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in mice and the equivalent nephrocyte cell in Drosophila. Developmental deletion of both GSK3 isoforms (α and ß) in murine podocytes causes late neonatal death associated with massive albuminuria and renal failure. Similarly, silencing GSK3 in nephrocytes is developmentally lethal for this cell. Mature genetic or pharmacological podocyte/nephrocyte GSK3 inhibition is also detrimental; producing albuminuric kidney disease in mice and nephrocyte depletion in Drosophila. Mechanistically, GSK3 loss causes differentiated podocytes to re-enter the cell cycle and undergo mitotic catastrophe, modulated via the Hippo pathway but independent of Wnt-ß-catenin. This work clearly identifies GSK3 as a critical regulator of podocyte and hence kidney function.


Asunto(s)
Albuminuria/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Enfermedades Renales/metabolismo , Riñón/fisiología , Podocitos/metabolismo , Albuminuria/sangre , Albuminuria/patología , Albuminuria/orina , Animales , Ciclo Celular , Línea Celular , Modelos Animales de Enfermedad , Drosophila , Eliminación de Gen , Silenciador del Gen , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Vía de Señalización Hippo , Estimación de Kaplan-Meier , Riñón/patología , Enfermedades Renales/sangre , Enfermedades Renales/patología , Enfermedades Renales/orina , Masculino , Ratones , Podocitos/enzimología , Podocitos/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica , Ratas Wistar , Insuficiencia Renal , Verteporfina/farmacología , beta Catenina/metabolismo
3.
Oncogene ; 34(27): 3514-26, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25195860

RESUMEN

Many components of the Wnt/ß-catenin signaling pathway have critical functions in mammary gland development and tumor formation, yet the contribution of glycogen synthase kinase-3 (GSK-3α and GSK-3ß) to mammopoiesis and oncogenesis is unclear. Here, we report that WAP-Cre-mediated deletion of GSK-3 in the mammary epithelium results in activation of Wnt/ß-catenin signaling and induces mammary intraepithelial neoplasia that progresses to squamous transdifferentiation and development of adenosquamous carcinomas at 6 months. To uncover possible ß-catenin-independent activities of GSK-3, we generated mammary-specific knockouts of GSK-3 and ß-catenin. Squamous transdifferentiation of the mammary epithelium was largely attenuated, however, mammary epithelial cells lost the ability to form mammospheres suggesting perturbation of stem cell properties unrelated to loss of ß-catenin alone. At 10 months, adenocarcinomas that developed in glands lacking GSK-3 and ß-catenin displayed elevated levels of γ-catenin/plakoglobin as well as activation of the Hedgehog and Notch pathways. Collectively, these results establish the two isoforms of GSK-3 as essential integrators of multiple developmental signals that act to maintain normal mammary gland function and suppress tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Glucógeno Sintasa Quinasa 3/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Neoplasias Mamarias Experimentales/genética , Animales , Femenino , Silenciador del Gen , Isoenzimas/genética , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Tumorales Cultivadas
4.
Endocrinology ; 154(10): 3702-18, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23904355

RESUMEN

Glycogen synthase kinase 3 ß (GSK-3ß) is an essential negative regulator or "brake" on many anabolic-signaling pathways including Wnt and insulin. Global deletion of GSK-3ß results in perinatal lethality and various skeletal defects. The goal of our research was to determine GSK-3ß cell-autonomous effects and postnatal roles in the skeleton. We used the 3.6-kb Col1a1 promoter to inactivate the Gsk3b gene (Col1a1-Gsk3b knockout) in skeletal cells. Mutant mice exhibit decreased body fat and postnatal bone growth, as well as delayed development of several skeletal elements. Surprisingly, the mutant mice display decreased circulating glucose and insulin levels despite normal expression of GSK-3ß in metabolic tissues. We showed that these effects are due to an increase in global insulin sensitivity. Most of the male mutant mice died after weaning. Prior to death, blood glucose changed from low to high, suggesting a possible switch from insulin sensitivity to resistance. These male mice die with extremely large bladders that are preceded by damage to the urogenital tract, defects that are also seen type 2 diabetes. Our data suggest that skeletal-specific deletion of GSK-3ß affects global metabolism and sensitizes male mice to developing type 2 diabetes.


Asunto(s)
Desarrollo Óseo , Huesos/enzimología , Diabetes Mellitus Tipo 2/complicaciones , Metabolismo Energético , Glucógeno Sintasa Quinasa 3/metabolismo , Resistencia a la Insulina , Enfermedades Urogenitales Masculinas/complicaciones , Animales , Huesos/metabolismo , Huesos/patología , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Cruzamientos Genéticos , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Susceptibilidad a Enfermedades , Femenino , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Regiones Promotoras Genéticas , Caracteres Sexuales , Análisis de Supervivencia , Sistema Urogenital/patología , Destete
5.
Oncogene ; 32(47): 5397-408, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23455320

RESUMEN

The phosphatidylinositol 3' kinase (PI3K) pathway is involved in many cellular processes including cell proliferation, survival and glucose transport, and is implicated in various disease states, such as cancer and diabetes. Although there have been numerous studies dissecting the role of PI3K signaling in different cell types and disease models, the mechanism by which PI3K signaling regulates embryonic stem (ES) cell fate remains unclear. It is believed that in addition to proliferation and tumorigenesis, PI3K activity may also be important for ES cell self-renewal. Paling et al. reported that the inhibition of PI3K led to a reduction in the ability of leukemia inhibitory factor to maintain self-renewal, causing cells to differentiate. Studies in our lab have revealed that ES cells completely lacking glycogen synthase kinase-3 (GSK-3) remain undifferentiated compared with wild-type ES cells. GSK-3 is negatively regulated by PI3K, suggesting that PI3K may have a vital role in maintaining pluripotency in ES cells through GSK-3. By using a modified Flp recombinase system, we expressed activated alleles of 3-phosphoinositide-dependent protein kinase-1 and protein kinase B to create stable, isogenic ES cell lines to further study the role of the PI3K signaling pathway in stem cell fate determination. In vitro characterization of the transgenic cell lines revealed a strong tendency toward the maintenance of pluripotency, and this phenotype was found to be independent of canonical Wnt signal transduction. In summary, PI3K signaling is sufficient to maintain the self-renewal and survival of stem cells. As this pathway is frequently mutationally activated in cancers, its effect on suppressing differentiation may contribute to its oncogenicity.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Células Madre Embrionarias/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Madre Embrionarias/citología , Activación Enzimática , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Ratones , Ratones Noqueados , Células Madre Pluripotentes/citología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Teratoma/metabolismo , beta Catenina/metabolismo
6.
Oncogene ; 32(16): 2048-57, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22665058

RESUMEN

A role for WNT signalling in gastric carcinogenesis has been suggested due to two major observations. First, patients with germline mutations in adenomatous polyposis coli (APC) are susceptible to stomach polyps and second, in gastric cancer, WNT activation confers a poor prognosis. However, the functional significance of deregulated WNT signalling in gastric homoeostasis and cancer is still unclear. In this study we have addressed this by investigating the immediate effects of WNT signalling activation within the stomach epithelium. We have specifically activated the WNT signalling pathway within the mouse adult gastric epithelium via deletion of either glycogen synthase kinase 3 (GSK3) or APC or via expression of a constitutively active ß-catenin protein. WNT pathway deregulation dramatically affects stomach homoeostasis at very short latencies. In the corpus, there is rapid loss of parietal cells with fundic gland polyp (FGP) formation and adenomatous change, which are similar to those observed in familial adenomatous polyposis. In the antrum, adenomas occur from 4 days post-WNT activation. Taken together, these data show a pivotal role for WNT signalling in gastric homoeostasis, FGP formation and adenomagenesis. Loss of the parietal cell population and corresponding FGP formation, an early event in gastric carcinogenesis, as well as antral adenoma formation are immediate effects of nuclear ß-catenin translocation and WNT target gene expression. Furthermore, our inducible murine model will permit a better understanding of the molecular changes required to drive tumourigenesis in the stomach.


Asunto(s)
Poliposis Adenomatosa del Colon/metabolismo , Transformación Celular Neoplásica/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Wnt/metabolismo , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Animales , Diferenciación Celular/fisiología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Transgenes , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
7.
Endocrinology ; 152(5): 1755-66, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21325041

RESUMEN

The rate of endochondral bone growth determines final height in humans and is tightly controlled. Glycogen synthase kinase-3 (GSK-3) is a negative regulator of several signaling pathways that govern bone growth, such as insulin/IGF and Wnt/ß-catenin. The two GSK-3 proteins, GSK-3α and GSK-3ß, display both overlapping and distinct roles in different tissues. Here we show that pharmacological inhibition of GSK-3 signaling in a mouse tibia organ culture system results in enhanced bone growth, accompanied by increased proliferation of growth plate chondrocytes and faster turnover of hypertrophic cartilage to bone. GSK-3 inhibition rescues some, but not all, effects of phosphatidylinositide 3-kinase inhibition in this system, in agreement with the antagonistic role of these two kinases in response to signals such as IGF. However, cartilage-specific deletion of the Gsk3b gene in mice has minimal effects on skeletal growth or development. Molecular analyses demonstrated that compensatory up-regulation of GSK-3α protein levels in cartilage is the likely cause for this lack of effect. To our knowledge, this is the first tissue in which such a compensatory mechanism is described. Thus, our study provides important new insights into both skeletal development and the biology of GSK-3 proteins.


Asunto(s)
Cartílago/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Tibia/enzimología , Aminofenoles/farmacología , Animales , Western Blotting , Cartílago/metabolismo , Proliferación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Femenino , Eliminación de Gen , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/crecimiento & desarrollo , Placa de Crecimiento/metabolismo , Inmunohistoquímica , Masculino , Maleimidas/farmacología , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Tibia/efectos de los fármacos , Tibia/crecimiento & desarrollo , Regulación hacia Arriba , beta Catenina/metabolismo
8.
Oncogene ; 30(2): 178-89, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20818428

RESUMEN

Although deregulation of the Wnt signalling pathway has been implicated in urothelial cell carcinoma (UCC), the functional significance is unknown. To test its importance, we have targeted expression of an activated form of ß-catenin to the urothelium of transgenic mice using Cre-Lox technology (UroIICRE(+) ß-catenin(exon3/+)). Expression of this activated form of ß-catenin led to the formation of localized hyperproliferative lesions by 3 months, which did not progress to malignancy. These lesions were characterized by a marked increase of the phosphatase and tensin homologue (PTEN) tumour suppressor protein. This appears to be a direct consequence of activating Wnt signalling in the bladder as conditional deletion of the adenomatous polyposis coli (Apc) gene within the adult bladder led rapidly to coincident ß-catenin and PTEN expression. This PTEN expression blocked proliferation. Next, we combined PTEN deficiency with ß-catenin activation and found that this caused papillary UCC. These tumours had increased pAKT signalling and were dependent on mammalian target of rapamycin (mTOR). Importantly, in human UCC, there was a significant correlation between high levels of ß-catenin and pAKT (and low levels of PTEN). Taken together these data show that deregulated Wnt signalling has a critical role in promoting UCC, and suggests that human UCC that have high levels of Wnt and PI3 kinase signalling may be responsive to mTOR inhibition.


Asunto(s)
Carcinoma Papilar/metabolismo , Transformación Celular Neoplásica/metabolismo , Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Vejiga Urinaria/inducido químicamente , beta Catenina/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Proliferación Celular , Estudios de Cohortes , Femenino , Humanos , Hiperplasia/inducido químicamente , Masculino , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/análisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Eliminación de Secuencia , Serina-Treonina Quinasas TOR/metabolismo , Vejiga Urinaria/metabolismo , Urotelio/metabolismo , Proteínas Wnt/metabolismo
9.
Diabetologia ; 53(12): 2600-10, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20821187

RESUMEN

AIMS/HYPOTHESIS: Glycogen synthase kinase 3ß (GSK-3ß) is an enzyme that is suppressed by insulin and when elevated results in insulin resistance in skeletal muscle and diabetes. Its role in beta cell development and function is little known. Because of the enzyme's anti-proliferative and pro-apoptotic properties, the hypothesis to be tested here was that beta cell specific deficiency of GSK-3ß in mice would result in enhanced beta cell mass and function. METHODS: Mice with beta cell deficiency of GSK-3ß (ß-Gsk-3ß [also known as Gsk3b](-/-)) were generated by breeding Gsk-3ß (flox/flox) mice with mice overexpressing the Cre recombinase gene under the control of the rat insulin 2 gene promoter (RIP-Cre mice), and glucose tolerance, insulin secretion, islet mass, proliferation and apoptosis were measured. Changes in islet proteins were investigated by western blotting. RESULTS: On a normal diet ß-Gsk-3ß ( -/- ) mice were found to have mild improvement of glucose tolerance and glucose-induced insulin secretion, and increased beta cell mass accompanied by increased proliferation and decreased apoptosis. On a high-fat diet ß-Gsk-3ß (-/-) mice exhibited improved glucose tolerance and expanded beta cell mass with increased proliferation relative to that in control mice, resisting fat-fed diabetes. Molecular mechanisms accounting for these phenotypic changes included increased levels of islet IRS1 and IRS2 proteins and phospho-Akt, suggesting enhanced signalling through the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, and increased islet levels of pancreas/duodenum homeobox protein 1 (PDX1). Inhibition of GSK3 in MIN6 cells in vitro led to increased IRS1 and IRS2 protein levels through inhibition of proteosomal degradation. CONCLUSIONS/INTERPRETATION: These results are consistent with a mechanism whereby endogenous GSK-3ß activity controls islet beta cell growth by feedback inhibition of the insulin receptor/PI3K/Akt signalling pathway.


Asunto(s)
Diabetes Mellitus Experimental/etiología , Grasas de la Dieta/efectos adversos , Resistencia a Medicamentos/genética , Glucógeno Sintasa Quinasa 3/genética , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/crecimiento & desarrollo , Animales , Células Cultivadas , Diabetes Mellitus Experimental/genética , Dieta Aterogénica , Ingestión de Alimentos/fisiología , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células Secretoras de Insulina/citología , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Tamaño de los Órganos/genética , Especificidad de Órganos/genética , Ratas , Regulación hacia Arriba/genética
10.
Oncogene ; 29(49): 6418-27, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-20729907

RESUMEN

Mutations in the adenomatous polyposis coli (APC) tumour suppressor are the key initiating event of colorectal cancer. Although the control of WNT signalling is well established as a central tumour-suppressive function, the significance of APC in regulating chromosome instability is less well established. In this study, we test whether APC-deficient cells have a functional spindle assembly checkpoint (SAC) in vivo by examining the response of these cells to Taxol and Vinorelbine. We also show for the first time that APC deficiency compromises the arrest response to Taxol in vivo. This effect is independent of the role that APC has in WNT signalling. At higher levels of Taxol, APC-deficient cells arrest as efficiently as wild-type cells. Importantly, this dose of Taxol strongly suppresses intestinal tumourigenesis in models of benign (APC(Min/+) mouse) and invasive (AhCreER(+)APC(fl/+)PTEN(fl/fl)) cancer. In contrast to intestinal enterocytes with a general SAC defect because of Bub1 (budding uninhibited by benzimidazole 1) deletion, APC-deficient enterocytes arrest equivalently to wild type when treated with Vinorelbine. This suggests that the failed arrest in response to Taxol is because of a specific defect in microtubule stabilization following Taxol treatment rather than a general role of the APC protein in the mitotic spindle checkpoint. In summary, this study clarifies the role of APC as a mitotic spindle checkpoint protein in vivo and shows that APC-deficient cells have a compromised response to Taxol.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/fisiología , Poliposis Adenomatosa del Colon/tratamiento farmacológico , Antineoplásicos Fitogénicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Paclitaxel/uso terapéutico , Huso Acromático/metabolismo , Poliposis Adenomatosa del Colon/patología , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Inestabilidad Cromosómica/genética , Enterocitos/efectos de los fármacos , Enterocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/genética , Eliminación de Secuencia , Huso Acromático/genética , Vinblastina/análogos & derivados , Vinblastina/uso terapéutico , Vinorelbina , Proteínas Wnt/metabolismo
11.
J Clin Pathol ; 58(3): 225-36, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15735151

RESUMEN

The products of the two mammalian Axin genes (Axin1 and its homologue Axin2) are essential for the degradation of beta catenin, a component of Wnt signalling that is frequently dysregulated in cancer cells. Axin is a multidomain scaffold protein that has many functions in biological signalling pathways. Overexpression of mutant [corrected] axin results in axis duplication in mouse embryos. Wnt signalling activity determines dorsal-ventral axis formation in vertebrates, implicating axin as a negative regulator of this signalling pathway. In addition, Wnts modulate pattern formation and the morphogenesis of most organs by influencing and controlling cell proliferation, motility, and fate. Defects in different components of the Wnt signalling pathway promote tumorigenesis and tumour progression. Recent biochemical studies of axins indicate that these molecules are the primary limiting components of this pathway. This review explores the intriguing connections between defects in axin function and human diseases.


Asunto(s)
Transformación Celular Neoplásica/genética , Proteínas de Neoplasias/fisiología , Proteínas Represoras/fisiología , Animales , Proteína Axina , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Ratones , Proteínas de Neoplasias/genética , Proteínas Represoras/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/fisiología , Proteínas Wnt
12.
Biochem Soc Trans ; 32(Pt 5): 803-8, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15494020

RESUMEN

Glycogen synthase kinase-3 is an unusual protein serine/threonine kinase that, unlike most of its 500-odd relatives in the genome, is active under resting conditions and is inactivated upon cell stimulation. The two mammalian isoforms, GSK-3alpha and beta, play largely overlapping roles and have been implicated in a variety of human pathologies, including Type II diabetes, Alzheimer's disease, bipolar disorder and cancer. Recently, the modes of regulation of this enzyme have been elucidated through a combination of structural and cell biological studies. A series of relatively selective small molecules have facilitated chemical manipulation of the enzyme in intact cells and tissues, and new roles for the protein kinase in embryonic stem cell differentiation and motility have emerged. Despite these advances, the therapeutic value of this enzyme as a drug target remains clouded by uncertainty over the potential of antagonists to promote tumorigenesis. This article describes the state of understanding of this intriguing enzyme, and weighs current evidence regarding whether there is a therapeutic window for amelioration of diseases in which it is implicated, in the absence of inducing new pathologies.


Asunto(s)
Glucógeno Sintasa Quinasa 3/fisiología , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Movimiento Celular , Activación Enzimática , Glucógeno/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Modelos Biológicos , Mutación , Neoplasias/metabolismo , Fosforilación , Unión Proteica , Isoformas de Proteínas , Proteínas Wnt
13.
Artículo en Inglés | MEDLINE | ID: mdl-14683459

RESUMEN

Glycogen synthase kinase-3 (GSK-3) has perplexed signal transduction researchers since its detection in skeletal muscle 25 years ago. The enzyme confounds most of the rules normally associated with protein kinases in that it exhibits significant activity, even in resting, unstimulated cells. However, the protein is highly regulated and potently inactivated in response to signals such as insulin and polypeptide growth factors. The enzyme also displays a distinct and unusual preference for substrates that have been previously phosphorylated by other protein kinases which provides obvious opportunities for cross-talk. Its substrates are diverse and are predominantly regulatory molecules. The molecular cloning of the kinase revealed it to be encoded by two related but distinct genes. Moreover, the mammalian proteins showed remarkable similarity to a fruitfly protein isolated on the basis of its role in cell fate determination. From these humble beginnings, study of the enzyme has accrued further surprises such as its inhibition by lithium, its regulation by serine and tyrosine phosphorylation and its implication in several human disorders including Alzheimers disease, bipolar disorder, cancer and diabetes. Most recently, small molecule inhibitors of GSK-3 have been developed and assessed for therapeutic potential in several of models of pathophysiology. The question is whether modulation of such an "involved" enzyme could lead to selective restoration of defects without multiple unwanted side effects. This review summarizes current knowledge of GSK-3 with respect to its known functions, together with an assessment of its real-life potential as a drug target for chronic conditions such as type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/enzimología , Sistemas de Liberación de Medicamentos/métodos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos/uso terapéutico , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos
15.
Dev Cell ; 1(6): 817-27, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11740943

RESUMEN

Protein kinase B (PKB, also termed Akt) is a phosphatidylinositol 3' kinase (PI3'K)-dependent enzyme implicated in survival signaling and human tumorigenesis. To identify potential targets of this protein kinase, we employed a genetic screen in Drosophila. Among several genes that genetically interacted with PKB was trachealess (trh), which encodes a bHLH-PAS domain transcription factor required for development of the trachea and other tubular organs. Trh activates expression of the fibroblast growth factor receptor Breathless, which, in turn, is required for directed migration of all tracheal branches. Using a combination of biochemical and transgenic approaches, we show that direct phosphorylation of Trh by PKB at serine 665 is essential for nuclear localization and functional activation of this regulator of branching morphogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/fisiología , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Tráquea/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Línea Celular , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Femenino , Genes Reporteros , Humanos , Masculino , Morfogénesis/fisiología , Mapeo Peptídico , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Pruebas de Precipitina , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt , Proteínas Recombinantes de Fusión/metabolismo , Tráquea/anatomía & histología , Factores de Transcripción/genética
17.
Sci STKE ; 2001(100): re12, 2001 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-11579232

RESUMEN

As knowledge of cellular signal transduction has accumulated, general truisms have emerged, including the notion that signaling proteins are usually activated by stimuli and that they, in turn, mediate the actions of specific agonists. Glycogen synthase kinase-3 (GSK-3) is an unusual protein-serine kinase that bucks these conventions. This evolutionarily conserved protein kinase is active in resting cells and is inhibited in response to activation of several distinct pathways, including those acting by elevation of 3' phosphorylated phosphatidylinositol lipids and adenosine 3'-5'-monophosphate (cAMP). In addition, GSK-3 is distinctly regulated by, and is a core component of, the Wnt pathway. This review describes the unique characteristics of this decidedly oddball protein kinase in terms of its diverse biological functions, plethora of targets, role in several human diseases, and consequential potential as a therapeutic target.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Proteínas de Pez Cebra , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/etiología , Animales , Trastorno Bipolar/tratamiento farmacológico , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Glucógeno Sintasa Quinasa 3 , Glucógeno Sintasa Quinasas , Humanos , Modelos Biológicos , FN-kappa B/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal , Proteínas Wnt
18.
Nat Rev Mol Cell Biol ; 2(10): 760-8, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11584303

RESUMEN

Since its discovery 10 years ago, the potential functions of protein kinase B (PKB)/AKT have been catalogued with increasing efficiency. The physiological relevance of some of the proposed mechanisms by which PKB/AKT mediates many of its effects has been questioned, and recent work using new reagents and approaches has revealed some cracks in our understanding of this important molecule, and also hinted that these effects may involve other players.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila/genética , Proteínas de Drosophila , Activación Enzimática , Humanos , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas c-akt , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
19.
J Mammary Gland Biol Neoplasia ; 6(1): 83-99, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11467455

RESUMEN

Suppression of apoptosis is now recognized as a key contributory element to tumorigenesis in animal models and human cancer. The phosphatidylinositol 3' kinase pathway plays a seminal role in cell death suppression or "survival signaling." Over the past 5 years, the molecular mechanisms by which this pathway exerts its death suppressive effects have slowly been revealed. This review summarizes the players involved, their importance in human cancer and their specific involvement in breast cancer.


Asunto(s)
Neoplasias Mamarias Animales/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Femenino , Humanos
20.
Int J Radiat Oncol Biol Phys ; 50(4): 1041-50, 2001 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-11429232

RESUMEN

PURPOSE: Protein kinase B (PKB) is a critical mediator of phosphoinositide 3-kinase-dependent survival signals in mammalian cells. Its activity is induced after heat shock, and is inhibited in cells undergoing apoptosis. We hypothesized that PKB may be an important modulator for heat-induced apoptosis in human cancer cells. METHODS AND MATERIALS: MCF-7 cells were transfected using four different plasmids, encoding a kinase-dead mutant PKB-AAA, a constitutively activated mutant PKB-DD, wild-type PKB, and the neomycin-resistant selection gene. These stable transfectants were subjected to heat shock, and assessed for PKB phosphorylation, PKB activity, and likelihood of undergoing apoptosis. RESULTS: After heating to 45 degrees C x 30 mins, 25% of MCF-7/neo transfectants underwent apoptosis, which increased to 38% in the presence of wortmannin (WT), an inhibitor of phosphoinositide 3-kinase. In contrast, 23% of the constitutively activated MCF-7/DD transfectants underwent apoptosis, minimally affected by WT. Heat-induced apoptosis occurred in 34% of the kinase-dead MCF-7/AAA transfectants, which increased further to 58% with the addition of WT. This in turn was associated with a two-fold reduction in clonogenic survival compared to the MCF-7/neo transfectants. CONCLUSION: Heat shock activation of PKB in human MCF-7 cells appears to be a significant modulator of heat-induced apoptosis and survival. Further understanding of this important pathway may offer potential in developing novel strategies in cancer therapy.


Asunto(s)
Apoptosis/fisiología , Neoplasias de la Mama/fisiopatología , Proteínas de Choque Térmico/metabolismo , Calor , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias de la Mama/enzimología , Supervivencia Celular/fisiología , Activación Enzimática , Femenino , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Humanos , Fosforilación , Plásmidos/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt , Factores de Tiempo , Transfección/métodos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...