Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; : OF1-OF16, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38863225

RESUMEN

Despite the success of poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory double-stranded RNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T-cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi-resistant ovarian tumor growth in vivo, and promotes antitumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.

2.
Cancer Res Commun ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867360

RESUMEN

Genome instability is a hallmark of cancer crucial for tumor heterogeneity and is often a result of defects in cell division and DNA damage repair. Tumors tolerate genomic instability, but the accumulation of genetic aberrations is regulated to avoid catastrophic chromosomal alterations and cell death. In ovarian cancer tumors, claudin-4 is frequently upregulated and closely associated with genome instability and worse patient outcomes. However, its biological association with regulating genomic instability is poorly understood. Here, we used CRISPR interference and a claudin mimic peptide (CMP) to modulate the claudin-4 expression and its function in vitro and in vivo. We found that claudin-4 promotes a tolerance mechanism for genomic instability through micronuclei generation in tumor cells. Disruption of claudin-4 increased autophagy and was associated with the engulfment of cytoplasm-localized DNA. Mechanistically, we observed that claudin-4 establishes a biological axis with the amino acid transporters SLC1A5 and LAT1, which regulate autophagy upstream of mTOR. Furthermore, the claudin-4/SLC1A5/LAT1 axis was linked to the transport of amino acids across the plasma membrane as one of the potential cellular processes that significantly decreased survival in ovarian cancer patients. Together, our results show that the upregulation of claudin-4 contributes to increasing the threshold of tolerance for genomic instability in ovarian tumor cells by limiting its accumulation through autophagy.

3.
Mol Cancer Ther ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714351

RESUMEN

Despite the success of Poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers Euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory dsRNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi resistant ovarian tumor growth in vivo, and promotes anti-tumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.

4.
Cancer Res Commun ; 4(3): 822-833, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38451784

RESUMEN

High-grade serous carcinoma (HGSC) of the fallopian tube, ovary, and peritoneum is the most common type of ovarian cancer and is predicted to be immunogenic because the presence of tumor-infiltrating lymphocytes conveys a better prognosis. However, the efficacy of immunotherapies has been limited because of the immune-suppressed tumor microenvironment (TME). Tumor metabolism and immune-suppressive metabolites directly affect immune cell function through the depletion of nutrients and activation of immune-suppressive transcriptional programs. Tryptophan (TRP) catabolism is a contributor to HGSC disease progression. Two structurally distinct rate-limiting TRP catabolizing enzymes, indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2), evolved separately to catabolize TRP. IDO1/TDO2 are aberrantly expressed in carcinomas and metabolize TRP into the immune-suppressive metabolite kynurenine (KYN), which can engage the aryl hydrocarbon receptor to drive immunosuppressive transcriptional programs. To date, IDO inhibitors tested in clinical trials have had limited efficacy, but those inhibitors did not target TDO2, and we find that HGSC cell lines and clinical outcomes are more dependent on TDO2 than IDO1. To identify inflammatory HGSC cancers with poor prognosis, we stratified patient ascites samples by IL6 status, which correlates with poor prognosis. Metabolomics revealed that IL6-high patient samples had enriched KYN. TDO2 knockdown significantly inhibited HGSC growth and TRP catabolism. The orally available dual IDO1/TDO2 inhibitor, AT-0174, significantly inhibited tumor progression, reduced tumor-associated macrophages, and reduced expression of immune-suppressive proteins on immune and tumor cells. These studies demonstrate the importance of TDO2 and the therapeutic potential of AT-0174 to overcome an immune-suppressed TME. SIGNIFICANCE: Developing strategies to improve response to chemotherapy is essential to extending disease-free intervals for patients with HGSC of the fallopian tube, ovary, and peritoneum. In this article, we demonstrate that targeting TRP catabolism, particularly with dual inhibition of TDO2 and IDO1, attenuates the immune-suppressive microenvironment and, when combined with chemotherapy, extends survival compared with chemotherapy alone.


Asunto(s)
Neoplasias Ováricas , Triptófano Oxigenasa , Femenino , Humanos , Triptófano Oxigenasa/genética , Triptófano/metabolismo , Antígeno B7-H1 , Interleucina-6 , Quinurenina/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Macrófagos/metabolismo , Microambiente Tumoral
5.
Obstet Gynecol ; 143(3): e63-e77, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176019

RESUMEN

OBJECTIVE: To determine biomarkers other than CA 125 that could be used in identifying early-stage ovarian cancer. DATA SOURCES: Ovid MEDLINE ALL, EMBASE, Web of Science Core Collection, ScienceDirect, Clinicaltrials.gov , and CAB Direct were searched for English-language studies between January 2008 and April 2023 for the concepts of high-grade serous ovarian cancer, testing, and prevention or early diagnosis. METHODS OF STUDY SELECTION: The 5,523 related articles were uploaded to Covidence. Screening by two independent reviewers of the article abstracts led to the identification of 245 peer-reviewed primary research articles for full-text review. Full-text review by those reviewers led to the identification of 131 peer-reviewed primary research articles used for this review. TABULATION, INTEGRATION, AND RESULTS: Of 131 studies, only 55 reported sensitivity, specificity, or area under the curve (AUC), with 36 of the studies reporting at least one biomarker with a specificity of 80% or greater specificity or 0.9 or greater AUC. CONCLUSION: These findings suggest that although many types of biomarkers are being tested in ovarian cancer, most have similar or worse detection rates compared with CA 125 and have the same limitations of poor detection rates in early-stage disease. However, 27.5% of articles (36/131) reported biomarkers with better sensitivity and an AUC greater than 0.9 compared with CA 125 alone and deserve further exploration.


Asunto(s)
Trompas Uterinas , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/diagnóstico , Biomarcadores
6.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38293054

RESUMEN

Genome instability is key for tumor heterogeneity and derives from defects in cell division and DNA damage repair. Tumors show tolerance for this characteristic, but its accumulation is regulated somehow to avoid catastrophic chromosomal alterations and cell death. Claudin-4 is upregulated and closely associated with genome instability and worse patient outcome in ovarian cancer. This protein is commonly described as a junctional protein participating in processes such as cell proliferation and DNA repair. However, its biological association with genomic instability is still poorly-understood. Here, we used CRISPRi and a claudin mimic peptide (CMP) to modulate the cladudin-4 expression and its function, respectively in in-vitro (high-grade serous carcinoma cells) and in-vivo (patient-derived xenograft in a humanized-mice model) systems. We found that claudin-4 promotes a protective cellular-mechanism that links cell-cell junctions to genome integrity. Disruption of this axis leads to irregular cellular connections and cell cycle that results in chromosomal alterations, a phenomenon associated with a novel functional link between claudin-4 and SLC1A5/LAT1 in regulating autophagy. Consequently, claudin-4's disruption increased autophagy and associated with engulfment of cytoplasm-localized DNA. Furthermore, the claudin-4/SLC1A5/LAT1 biological axis correlates with decrease ovarian cancer patient survival and targeting claudin-4 in-vivo with CMP resulted in increased niraparib (PARPi) efficacy, correlating with increased tumoral infiltration of T CD8+ lymphocytes. Our results show that the upregulation of claudin-4 enables a mechanism that promotes tolerance to genomic instability and immune evasion in ovarian cancer; thus, suggesting the potential of claudin-4 as a translational target for enhancing ovarian cancer treatment.

7.
Cancer Gene Ther ; 31(2): 300-310, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38030811

RESUMEN

Ovarian cancer is the deadliest gynecological malignancy, and accounts for over 150,000 deaths per year worldwide. The high grade serous ovarian carcinoma (HGSC) subtype accounts for almost 70% of ovarian cancers and is the deadliest. HGSC originates in the fimbria of the fallopian tube and disseminates through the peritoneal cavity. HGSC survival in peritoneal fluid requires cells to resist anoikis (anchorage-independent apoptosis). Most anoikis resistant mechanisms are dependent on microenvironment interactions with cell surface-associated proteins, such as integrins and receptor tyrosine kinases (RTKs). We previously identified the gene CASC4 as a driver of anoikis resistance. CASC4 is predicted to be a Golgi-associated protein that may regulate protein trafficking to the plasma membrane, but CASC4 is largely uncharacterized in literature; thus, we sought to determine how CASC4 confers anoikis resistance to HGSC cells. Mining of publicly available ovarian cancer datasets (TCGA) showed that CASC4 is associated with worse overall survival and increased resistance to platinum-based chemotherapies. For experiments, we cultured three human HGSC cell lines (PEO1, CaOV3, OVCAR3), and a murine HGSC cell line, (ID8) with shRNA-mediated CASC4 knockdowns (CASC4 KD) in suspension, to recapitulate the peritoneal fluid environment in vitro. CASC4 KD significantly inhibited cell proliferation and colony formation ability, and increased apoptosis. A Reverse Phase Protein Assay (RPPA) showed that CASC4 KD resulted in a broad re-programming of membrane-associated proteins. Specifically, CASC4 KD led to decreased protein levels of the RTK Epidermal Growth Factor Receptor (EGFR), an initiator of several oncogenic signaling pathways, leading us to hypothesize that CASC4 drives HGSC survival through mediating recycling and trafficking of EGFR. Indeed, loss of CASC4 led to a decrease in both EGFR membrane localization, reduced turnover of EGFR, and increased EGFR ubiquitination. Moreover, a syngeneic ID8 murine model of ovarian cancer showed that knocking down CASC4 leads to decreased tumor burden and dissemination.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Humanos , Femenino , Animales , Ratones , Neoplasias Ováricas/patología , Anoicis/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Línea Celular Tumoral , Receptores ErbB/genética , Factores de Transcripción , Microambiente Tumoral
8.
J Evid Based Soc Work (2019) ; : 1-18, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37871138

RESUMEN

PURPOSE: Addiction-focused eye movement desensitization reprocessing (AF-EMDR) is a viable add-on therapy to treat memories that drive addiction cravings. However, little research has explored AF-EMDR and its effects in people with substance abuse disorder (SUD). The purposes of this study were to determine the feasibility of conducting AF-EMDR and to test the preliminary efficacy of AF-EMDR on overall cravings experienced by persons with SUD, craving, perseverations associated with addiction, and irrational cognitions related to addiction. METHODS: This pilot study used a two-arm randomized controlled trial (RCT) design with an experimental group (AF-EMDR + cognitive behavioral therapy [CBT]) and a control group (CBT Only). Thirty participants were recruited from a residential program or a partial hospitalization program in a recovery center in Florida, from October 2021 through January 2022 and randomly assigned to the experimental group (n = 15) or the control group (n = 15). RESULTS: All participants adhered to the four-session 60-min AF-EMDR intervention and post-intervention data collection; 98.33% completed all four sessions. Results indicated significant reductions in cravings, perseverative thoughts about substance of choice, and irrational cognitions among participants in both the experimental (AF-EMDR + CBT) and control (CBT Only) groups during the intervention; however, there was no significant difference between groups. CONCLUSIONS: The results showed positive trends in decreasing craving. However, more clinical trials with a larger sample are necessary to assess the efficacy and sustainability of such effects in persons with SUD.

9.
Expert Opin Ther Targets ; 27(4-5): 361-371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37243607

RESUMEN

BACKGROUND: The Polycomb Repressor Complex 1 (PRC1) is an epigenetic regulator of differentiation and development, consisting of multiple subunits including RING1, BMI1, and Chromobox. The composition of PRC1 dictates its function and aberrant expression of specific subunits contributes to several diseases including cancer. Specifically, the reader protein Chromobox2 (CBX2) recognizes the repressive modifications including histone H3 lysine 27 tri-methylation (H3K27me3) and H3 lysine 9 dimethylation (H3K9me2). CBX2 is overexpressed in several cancers compared to the non-transformed cell counterparts, it promotes both cancer progression and chemotherapy resistance. Thus, inhibiting the reader function of CBX2 is an attractive and unique anti-cancer approach. RESEARCH DESIGN & METHODS: Compared with other CBX family members, CBX2 has a unique A/T-hook DNA binding domain that is juxtaposed to the chromodomain (CD). Using a computational approach, we constructed a homology model of CBX2 encompassing the CD and A/T hook domain. We used the model as a basis for peptide design and identified blocking peptides that are predicted to directly bind the CD and A/T-hook regions of CBX2. These peptides were tested in vitro and in vivo models. CONCLUSION: The CBX2 blocking peptide significantly inhibited both 2D and 3D growth of ovarian cancer cells, downregulated a CBX2 target gene, and blunted tumor growth in vivo.


Asunto(s)
Neoplasias , Complejo Represivo Polycomb 1 , Humanos , Complejo Represivo Polycomb 1/metabolismo , Lisina , Proteínas del Grupo Polycomb , Péptidos
10.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066339

RESUMEN

SM08502 (cirtuvivint) is a novel pan CDC-like kinase (CLK) and Dual specificity tyrosine kinase (DYRK) inhibitor that targets mRNA splicing and is optimized for Wnt pathway inhibition. Previous evaluation of single agent CLK/DYRK inhibition (SM04690) demonstrated inhibition of tumor progression and ß-catenin/TCF transcriptional activity in CTNNB1-mutant endometrial cancer (EC). In-vitro analysis of SM08502 similarly decreases Wnt transcriptional activity and cellular proliferation while increasing cellular apoptosis. SM08502 is an active single-agent therapy with IC50's in the nanomolar range for all EC cell lines evaluated. Combination of SM08502 with paclitaxel has synergistic effect in vitro, as demonstrated by Combination Index <1, and inhibits tumor progression in four endometrial cancer models (HEC265, Ishikawa, Ishikawa-S33Y, and SNGM). In our in vivo mouse models, Ishikawa demonstrated significantly lower tumor volumes of combination vs SM08502 alone (Repeated Measures one-way ANOVA, p = 0.04), but not vs paclitaxel alone. HEC265, SNGM, and Ishikawa-S33Y tumors all had significantly lower tumor volumes with combination SM08502 and paclitaxel compared to single-agent paclitaxel (Repeated Measures one-way ANOVA, p = 0.01, 0.004, and 0.0008, respectively) or single-agent SM08502 (Repeated Measures one-way ANOVA, p = 0.002, 0.005, and 0.01, respectively) alone. Mechanistically, treatment with SM08502 increases alternative splicing (AS) events compared to treatment with paclitaxel. AS regulation is an important post-transcriptional mechanism associated with the oncogenic process in many cancers, including EC. Results from these studies have led to a Phase I evaluation of this combination in recurrent EC.

11.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865165

RESUMEN

Euchromatic histone lysine methyltransferases 1 and 2 (EHMT1/2), which catalyze demethylation of histone H3 lysine 9 (H3K9me2), contribute to tumorigenesis and therapy resistance through unknown mechanisms of action. In ovarian cancer, EHMT1/2 and H3K9me2 are directly linked to acquired resistance to poly-ADP-ribose polymerase (PARP) inhibitors and are correlated with poor clinical outcomes. Using a combination of experimental and bioinformatic analyses in several PARP inhibitor resistant ovarian cancer models, we demonstrate that combinatory inhibition of EHMT and PARP is effective in treating PARP inhibitor resistant ovarian cancers. Our in vitro studies show that combinatory therapy reactivates transposable elements, increases immunostimulatory dsRNA formation, and elicits several immune signaling pathways. Our in vivo studies show that both single inhibition of EHMT and combinatory inhibition of EHMT and PARP reduces tumor burden, and that this reduction is dependent on CD8 T cells. Together, our results uncover a direct mechanism by which EHMT inhibition helps to overcome PARP inhibitor resistance and shows how an epigenetic therapy can be used to enhance anti-tumor immunity and address therapy resistance.

12.
Mol Cancer Ther ; 21(8): 1285-1295, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35587258

RESUMEN

Identifying novel, durable treatments for high-grade serous ovarian cancer (HGSOC) is paramount to extend both progression-free survival (PFS) and overall survival (OS) in patients afflicted with this disease. Dual-specificity phosphatase 1 (DUSP1) was identified as one of seven genes that may significantly affect prognosis in patients with HGSOC; however, the role of DUSP inhibition (DUSPi) in the treatment of HGSOC remains largely unknown. In this study, we show that DUSP1 is highly expressed in HGSOC and confers worse PFS and OS. Further, we corroborate data that show DUSP1 expression is directly associated with therapy resistance. Using a tissue microarray of 137 different serous ovarian carcinomas, we demonstrate the high expression of DUSP1 in primary and recurrent serous ovarian cancer. In both acquired and de novo therapy HGSOC-resistant models, DUSPi both inhibited cellular proliferation and promoted cell death. RPPA analysis of HGSOC cells revealed DUSPi led to the differential regulation of several pathways, including AMPK and mTORC. Further, in a patient-derived xenograft HGSOC model, DUSPi significantly inhibited tumor progression.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Carcinoma Epitelial de Ovario , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Femenino , Humanos , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Pronóstico
13.
Mol Cancer Ther ; 21(4): 647-657, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35373300

RESUMEN

High-grade serous ovarian cancer is the deadliest gynecologic malignancy due to progression to resistant disease. Claudin-4 is classically defined as a tight junction protein and is often associated with epithelial cancers. Claudin-4 is aberrantly expressed in nearly 70% of all ovarian cancer tumors and conveys a worse overall prognosis. Elevated claudin-4 expression correlates to increased DNA repair activity and resistance to DNA damaging agents. PARP inhibitors are emerging as an effective therapeutic option for patients with ovarian cancer and function by promoting DNA damage. The study examines the relationship between claudin-4 expression and the response to PARP inhibitors using both genetic and pharmacologic inhibition of claudin-4 in in vitro and ex vivo models of ovarian cancer to examine DNA repair markers and functional activity. Genetic inhibition of claudin-4 results in the downregulation of several DNA damage repair effectors, including 53BP1 and XRCC1. Claudin-4 knockdown did not change homology-directed repair but inhibited nonhomologous end-joining and reduced 53BP1 foci formation. In 15 primary ovarian cancer tumors, higher claudin-4 expression significantly correlated to a dampened PARP inhibitor-mediated antiproliferation response. Further, claudin-4 inhibition in high claudin-4 tumors sensitized tumor sections to PARP inhibition. These data highlight that claudin-4 expression in ovarian cancer tumors could serve as both a marker of PARP inhibitor response and a therapeutic target to improve PARP inhibitor response.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Claudina-4/genética , Daño del ADN , Reparación del ADN , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
14.
Mol Carcinog ; 60(8): 511-523, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34038589

RESUMEN

The role of ß-catenin/TCF transcriptional activity in endometrial cancer (EC) recurrence is not well understood. We assessed the impact of Wnt/ß-catenin inhibition in EC models. In an analysis of the Cancer Genome Atlas, we confirmed that CTNNB1 mutations are enriched in recurrent low-risk EC and showed that aberrant Wnt/ß-catenin pathway activation is associated with recurrence. We studied CTNNB1-wildtype (HEC1B, Ishikawa) and CTNNB1-mutant (HEC108, HEC265, HEC1B-S33Y, Ishikawa-S33Y) EC cell lines. Dose response curves were determined for 5 Wnt/ß-catenin pathway inhibitors (Wnt-C59, XAV-939, PyrPam, PRI-724, SM04690). XAV939, Wnt-C59 and PyrPam inhibited function upstream of ß-catenin transcriptional activity and were ineffective at inhibiting cell viability. In contrast, PRI724 and SM04690 indirectly inhibited ß-catenin transcriptional activity and significantly reduced cell viability in CTNNB1-mutant cell lines. Treatment with SM04690 reduced cell viability (Licor Cell stain) in all EC cell lines, but viability was significantly lower in CTNNB1-mutant cell lines (p < 0.01). Mechanistically, SM04690 significantly inhibited proliferation measured via 5'-bromo-2'-deoxyuridine incorporation and reduced T cell factor (TCF) transcriptional activity. HEC1B, HEC1B-S33Y and HEC265 tumor-bearing mice were treated with vehicle or SM04690. Tumors treated with SM04690 had smaller mean volumes than those treated with vehicle (p < 0.001, p = 0.014, p = 0.06). In HEC1B-S33Y and HEC265 tumors, SM04690 treatment significantly reduced Ki67 H-scores compared to vehicle (p = 0.035, p = 0.024). Targeting the Wnt/ß-catenin pathway in CTNNB1-mutant EC effectively inhibited proliferation and ß-catenin/TCF transcriptional activity and blunted tumor progression in in vivo models. These studies suggest ß-catenin transcriptional inhibitors are effective in EC and particularly in CTNNB1-mutant EC, highlighting a potential therapeutic vulnerability for treatment of CTNNB1-mutant EC.


Asunto(s)
Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Mutación , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Imidazoles/farmacología , Indazoles/farmacología , Terapia Molecular Dirigida , Piridinas/farmacología , Recurrencia , beta Catenina/genética
15.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560059

RESUMEN

Gynecologic malignancies, including ovarian cancer, endometrial cancer, and cervical cancer, affect hundreds of thousands of women worldwide every year. Wnt signaling, specifically Wnt/ß-catenin signaling, has been found to play an essential role in many oncogenic processes in gynecologic malignancies, including tumorigenesis, metastasis, recurrence, and chemotherapy resistance. As such, the Wnt/ß-catenin signaling pathway has the potential to be a target for effective treatment, improving patient outcomes. In this review, we discuss the evidence supporting the importance of the Wnt signaling pathways in the development, progression, and treatment of gynecologic malignancies.


Asunto(s)
Neoplasias Endometriales/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Vía de Señalización Wnt , Antineoplásicos/uso terapéutico , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia
16.
eNeuro ; 5(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627637

RESUMEN

Post-traumatic stress disorder (PTSD) is associated with impaired conditioned fear extinction learning, a ventromedial prefrontal cortex (vmPFC)-dependent process. PTSD is also associated with dysregulation of vmPFC, circadian, and glucocorticoid hormone function. Rats have rhythmic clock gene expression in the vmPFC that requires appropriate diurnal circulatory patterns of corticosterone (CORT), suggesting the presence of CORT-entrained intrinsic circadian clock function within the PFC. We examined the role of vmPFC clock gene expression and its interaction with CORT profiles in regulation of auditory conditioned fear extinction learning. Extinction learning and recall were examined in male rats trained and tested either in the night (active phase) or in the day (inactive phase). Using a viral vector strategy, Per1 and Per2 clock gene expression were selectively knocked down within the vmPFC. Circulating CORT profiles were manipulated via adrenalectomy (ADX) ± diurnal and acute CORT replacement. Rats trained and tested during the night exhibited superior conditioned fear extinction recall that was absent in rats that had knock-down of vmPFC clock gene expression. Similarly, the superior nighttime extinction recall was absent in ADX rats, but restored in ADX rats given a combination of a diurnal pattern of CORT and acute elevation of CORT during the postextinction training consolidation period. Thus, conditioned fear extinction learning is regulated in a diurnal fashion that requires normal vmPFC clock gene expression and a combination of circadian and training-associated CORT. Strategic manipulation of these factors may enhance the therapeutic outcome of conditioned fear extinction related treatments in the clinical setting.


Asunto(s)
Condicionamiento Psicológico/fisiología , Corticosterona/metabolismo , Extinción Psicológica/fisiología , Miedo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Circadianas Period/metabolismo , Corteza Prefrontal/metabolismo , Adrenalectomía , Animales , Ritmo Circadiano/fisiología , Corticosterona/farmacología , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Recuerdo Mental/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas Circadianas Period/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Transducción Genética
17.
Stress ; 21(1): 69-83, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29165002

RESUMEN

Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.


Asunto(s)
Factores de Transcripción ARNTL/genética , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Circadianas Period/genética , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , ARN Mensajero/metabolismo , Estrés Psicológico/genética , Glándulas Suprarrenales/metabolismo , Adrenalectomía , Animales , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Ritmo Circadiano/fisiología , Corticosterona/metabolismo , Femenino , Glucocorticoides/metabolismo , Hibridación in Situ , Masculino , Actividad Motora , Ratas , Restricción Física , Núcleo Supraquiasmático/metabolismo
18.
Front Neuroendocrinol ; 49: 52-71, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29288075

RESUMEN

Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body. Stress-induced glucocorticoid secretion also modulates the state of these same cells in response to both physiological and psychological stressors. We review the strong functional interrelationships between glucocorticoids and the circadian system, and discuss how these interactions optimize the appropriate cellular and systems response to stress throughout the day. We also discuss clinical implications of this dual aspect of glucocorticoid signaling, especially for conditions of circadian and HPA axis dysregulation.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Esteroides/metabolismo , Estrés Psicológico/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Humanos
19.
Brain Res ; 1672: 113-121, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28764933

RESUMEN

Sex differences in the expression of social behavior are typically apparent in adolescent and adult rats. While the neurobiology underlying juvenile social play behavior has been well characterized, less is known about discrete brain regions involved in adult responsiveness to a same sex peer. Furthermore, whether adult males and females differ in their responsiveness to a social interaction in terms of neuronal activation indexed via immediate early gene (IEG) expression remains to be determined. Thus, the present study was designed to identify key sites relevant to the processing of sensory stimuli (generally) or social stimuli (specifically) after brief exposure to a same-sex social partner by assessing IEG expression. Four-month-old male and female Fisher (F) 344 rats (N=38; n=5-8/group) were either left undisturbed in their home cage as controls (HCC), exposed to a testing context alone for 30min (CXT), or were placed in the context for 20min and then allowed to socially interact (SI) with a sex-matched conspecific for 10min. Females demonstrated greater levels of social behavior, relative to males. Analysis of c-Fos induction revealed that females exhibited greater c-Fos expression in the prefrontal cortex, regardless of condition. In many brain regions, induction was similar in the CXT and SI groups. However, in the bed nucleus of the stria terminalis (BNST), females exhibited greater c-Fos induction in response to the social interaction relative to their male counterparts, indicating a sex difference in responsivity to social stimuli. Taken together, these data suggest that the BNST is a sexually dimorphic region in terms of activation in response to social stimuli.


Asunto(s)
Proteínas Proto-Oncogénicas c-fos/biosíntesis , Núcleos Septales/fisiología , Conducta Sexual Animal/fisiología , Animales , Femenino , Expresión Génica , Genes fos , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Endogámicas F344 , Núcleos Septales/metabolismo , Factores Sexuales
20.
PLoS One ; 12(4): e0175075, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28376115

RESUMEN

Recent studies support plasticity in adult brain white matter structure and myelination in response to various experiential factors. One possible contributor to this plasticity may be activity-dependent modulation of serum- and glucocorticoid-inducible kinase 1 (Sgk1) expression in oligodendrocytes. We examined whether Sgk1 expression in adult rat brain white matter is increased by acute stress-induced elevations in endogenous corticosterone and whether it fluctuates with diurnal variations in corticosterone. We observed rapid increases (within 30 min) in Sgk1 mRNA in the corpus callosum in response to acute stress, as well as large increases at the beginning of the rat's active period (the time of peak corticosterone secretion). These increases were absent in adrenalectomized rats. Corticosterone treatment of adrenalectomized rats also rapidly increased corpus callosum Sgk1 mRNA. The majority of Sgk1 mRNA in corpus callosum was co-localized with myelin basic protein mRNA, suggesting that mature oligodendrocytes respond dynamically to acute stress and circadian rhythms. The regulation of Sgk1 expression by acute stress and time of day was selective for white matter, with limited alteration of Sgk1 expression by these factors in hippocampus and somatosensory cortex. These results indicate a unique sensitivity of oligodendrocyte Sgk1 expression to activity-dependent fluctuations in corticosterone hormone secretion, and raises the prospect that hypothalamic-pituitary-adrenal axis dysregulation or glucocorticoid pharmacotherapy may compromise the normal activity-dependent interactions between oligodendrocytes and neurons.


Asunto(s)
Encéfalo/metabolismo , Glucocorticoides/metabolismo , Proteínas Inmediatas-Precoces/genética , Oligodendroglía/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Adrenalectomía , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Ritmo Circadiano , Cuerpo Calloso/citología , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/metabolismo , Corticosterona/sangre , Corticosterona/metabolismo , Corticosterona/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Oligodendroglía/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...