Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Sci Transl Med ; 16(744): eadg5768, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657024

RESUMEN

Sepsis is a life-threatening disease caused by a dysregulated host response to infection, resulting in 11 million deaths globally each year. Vascular endothelial cell dysfunction results in the loss of endothelial barrier integrity, which contributes to sepsis-induced multiple organ failure and mortality. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their ephrin ligands play a key role in vascular endothelial barrier disruption but are currently not a therapeutic target in sepsis. Using a cecal ligation and puncture (CLP) mouse model of sepsis, we showed that prophylactic or therapeutic treatment of mice with EphA4-Fc, a decoy receptor and pan-ephrin inhibitor, resulted in improved survival and a reduction in vascular leak, lung injury, and endothelial cell dysfunction. EphA2-/- mice also exhibited reduced mortality and pathology after CLP compared with wild-type mice. Proteomics of plasma samples from mice with sepsis after CLP revealed dysregulation of a number of Eph/ephrins, including EphA2/ephrin A1. Administration of EphA4-Fc to cultured human endothelial cells pretreated with TNF-α or ephrin-A1 prevented loss of endothelial junction proteins, specifically VE-cadherin, with maintenance of endothelial barrier integrity. In children admitted to hospital with fever and suspected infection, we observed that changes in EphA2/ephrin A1 in serum samples correlated with endothelial and organ dysfunction. Targeting Eph/ephrin signaling may be a potential therapeutic strategy to reduce sepsis-induced endothelial dysfunction and mortality.


Asunto(s)
Células Endoteliales , Efrinas , Sepsis , Transducción de Señal , Animales , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/patología , Humanos , Células Endoteliales/metabolismo , Ratones , Efrinas/metabolismo , Ratones Endogámicos C57BL , Receptores de la Familia Eph/metabolismo , Ciego/patología , Masculino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Modelos Animales de Enfermedad
2.
Biol Psychiatry Glob Open Sci ; 4(3): 100306, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38628385

RESUMEN

Background: Accumulating evidence underscores the pivotal role of heightened inflammation in the pathophysiology of stress-related diseases, but the underlying mechanisms remain elusive. The complement system, a key effector of the innate immune system, produces the C5-cleaved activation product C5a upon activation, initiating inflammatory responses through the canonical C5a receptor 1 (C5aR1). While C5aR1 is expressed in stress-responsive brain regions, its role in stress responsiveness remains unknown. Methods: To investigate C5a-C5aR1 signaling in stress responses, mice underwent acute and chronic stress paradigms. Circulating C5a levels and messenger RNA expression of C5aR1 in the hippocampus and adrenal gland were measured. C5aR1-deficient mice were used to elucidate the effects of disrupted C5a-C5aR1 signaling across behavioral, hormonal, metabolic, and inflammation parameters. Results: Chronic restraint stress elevated circulating C5a levels while reducing C5aR1 messenger RNA expression in the hippocampus and adrenal gland. Notably, the absence of C5aR1 signaling enhanced adrenal sensitivity to adrenocorticotropic hormone, concurrently reducing pituitary adrenocorticotropic hormone production and enhancing the response to acute stress. C5aR1-deficient mice exhibited attenuated reductions in locomotor activity and body weight under chronic stress. Additionally, these mice displayed increased glucocorticoid receptor sensitivity and disrupted glucose and insulin homeostasis. Chronic stress induced an increase in C5aR1-expressing microglia in the hippocampus, a response mitigated in C5aR1-deficient mice. Conclusions: C5a-C5aR1 signaling emerges as a key metabolic regulator during stress, suggesting that complement activation and dysfunctional C5aR1 signaling may contribute to neuroinflammatory phenotypes in stress-related disorders. The results advocate for further exploration of complement C5aR1 as a potential therapeutic target for stress-related conditions.


How the immune system, particularly the complement system, influences responses to stress has not been fully clear. In this study, we focus on C5a-C5aR1 signaling, a part of the immune system, and found that it significantly affects stress-related reactions in mice. In chronic stress, we observed increased inflammation, altered hormonal responses, and disrupted metabolic regulation. Mice lacking C5aR1 showed reduced stress-induced behavioral changes, indicating that this receptor may play a vital role in modulating the stress response. Understanding these immune mechanisms sheds light on stress-related disorders and may open avenues for therapeutic interventions.

3.
Trends Immunol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38637200

RESUMEN

The persistence or recurrence of symptoms after acute SARS-CoV-2 infection, termed 'long COVID', presents a formidable challenge to global healthcare systems. Recent research by Cervia-Hasler and colleagues delves into the intricate immunological landscape in patients with long COVID, demonstrating an interplay between complement and coagulation, driven by antiviral antibodies and tissue damage.

4.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458648

RESUMEN

Plexiform neurofibromas (PNFs) are nerve tumors caused by loss of NF1 and dysregulation of RAS-MAPK signaling in Schwann cells. Most PNFs shrink in response to MEK inhibition, but targets with increased and durable effects are needed. We identified the anaphylatoxin C5a as increased in PNFs and expressed largely by PNF m acrophages. We defined pharmacokinetic and immunomodulatory properties of a C5aR1/2 antagonist and tested if peptide antagonists augment the effects of MEK inhibition. MEK inhibition recruited C5AR1 to the macrophage surface; short-term inhibition of C5aR elevated macrophage apoptosis and Schwann cell death, without affecting MEK-induced tumor shrinkage. PNF macrophages lacking C5aR1 increased the engulfment of dying Schwann cells, allowing their visualization. Halting combination therapy resulted in altered T-cell distribution, elevated Iba1+ and CD169+ immunoreactivity, and profoundly altered cytokine expression, but not sustained trumor shrinkage. Thus, C5aRA inhibition independently induces macrophage cell death and causes sustained and durable effects on the PNF microenvironment.


Asunto(s)
Citofagocitosis , Neurofibroma Plexiforme , Humanos , Macrófagos/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos , Neurofibroma Plexiforme/patología , Transducción de Señal , Microambiente Tumoral
5.
Proc Natl Acad Sci U S A ; 121(5): e2314627121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252818

RESUMEN

The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns. Although there is evidence of cross talk between complement and PRR signaling pathways, knowledge of the full potential for C5a-PRR interaction is limited. In this study, we comprehensively investigated how C5a signaling through C5a receptors can modulate diverse PRR-mediated cytokine responses in human primary monocyte-derived macrophages and observed a powerful, concentration-dependent bidirectional effect of C5a on PRR activities. Unexpectedly, C5a synergized with Dectin-1, Mincle, and STING in macrophages to a much greater extent than TLRs. Notably, we also identified that selective Dectin-1 activation using depleted zymosan triggered macrophages to generate cell-intrinsic C5a, which acted on intracellular and cell surface C5aR1, to help sustain mitochondrial ROS generation, up-regulate TNFα production, and enhance fungal killing. This study adds further evidence to the holistic functions of C5a as a central immunomodulator and important orchestrator of pathogen sensing and killing by phagocytes.


Asunto(s)
Complemento C5a , Lectinas Tipo C , Macrófagos , Humanos , Complemento C5a/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Células Mieloides , Fagocitos , Transducción de Señal
6.
Mol Neurobiol ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252383

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease characterised by the deposition of aggregated proteins including TAR DNA-binding protein 43 (TDP-43) in vulnerable motor neurons and the brain. Extracellular vesicles (EVs) facilitate the spread of neurodegenerative diseases and can be easily accessed in the bloodstream. This study aimed to identify a panel of EV miRNAs that can capture the pathology occurring in the brain and peripheral circulation. EVs were isolated from the cortex (BDEVs) and serum (serum EVs) of 3 month-old and 6-month-old TDP-43*Q331K and TDP-43*WT mice. Following characterisation and miRNA isolation, the EVs underwent next-generation sequencing where 24 differentially packaged miRNAs were identified in the TDP-43*Q331K BDEVs and 7 in the TDP-43*Q331K serum EVs. Several miRNAs, including miR-183-5p, were linked to ALS. Additionally, miR-122-5p and miR-486b-5p were identified in both panels, demonstrating the ability of the serum EVs to capture the dysregulation occurring in the brain. This is the first study to identify miRNAs common to both the serum EVs and BDEVs in a mouse model of ALS.

7.
Nat Aging ; 3(12): 1561-1575, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957361

RESUMEN

Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks. In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression. Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.


Asunto(s)
COVID-19 , Humanos , Ratones , Animales , Anciano , Senoterapéuticos , SARS-CoV-2 , Envejecimiento , Encéfalo
8.
Neurotrauma Rep ; 4(1): 663-681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908321

RESUMEN

A potent effector of innate immunity, the complement system contributes significantly to the pathophysiology of traumatic brain injury (TBI). This study investigated the role of the complement cascade in neurobehavioral outcomes and neuropathology after TBI. Agents acting at different levels of the complement system, including 1) C1 esterase inhibitor (C1-Inh), 2) CR2-Crry, an inhibitor of all pathways acting at C3, and 3) the selective C5aR1 antagonist, PMX205, were administered at 1 h post-TBI. Their effects were evaluated on motor function using the rotarod apparatus, cognitive function using the active place avoidance (APA) task, and brain lesion size at a chronic stage after controlled cortical impact injury in C5-sufficient (C5+/+) and C5-deficient (C5-/-) CD1 mice. In post-TBI C5+/+ mice, rotarod performance was improved by CR2-Crry, APA performance was improved by CR2-Crry and PMX205, and brain lesion size was reduced by PMX205. After TBI, C5-/- mice performed better in the APA task compared with C5+/+ mice. C5 deficiency enhanced the effect of C1-Inh on motor function and brain damage and the effect of CR2-Crry on brain damage after TBI. Our findings support critical roles for C3 in motor deficits, the C3/C5/C5aR1 axis in cognitive deficits, and C5aR1 signaling in brain damage after TBI. Findings suggest the combination of C5 inhibition with C1-Inh and CR2-Crry as potential therapeutic strategies in TBI.

9.
STAR Protoc ; 4(4): 102758, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38032798

RESUMEN

The complement receptors C3aR and C5aR1 are promising therapeutic targets. Here, we present a protocol to screen the effects of different agonists and antagonists on these receptors in vitro, using phosphorylated extracellular signal-regulated kinase (ERK) as a readout. We describe steps for isolating human monocyte-derived macrophages, culturing and preparing Chinese hamster ovary cells stably expressing human C5aR1 or C3aR, performing pharmacological assays, and detecting phospho-ERK1/2 in the cell lysate. This protocol can also be performed using other cell lines. For complete details on the use and execution of this protocol, please refer to Li et al. (2020)1 and Li et al.2.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Receptores de Complemento , Cricetinae , Animales , Humanos , Fosforilación , Células CHO , Cricetulus , Receptores de Complemento/metabolismo
10.
Cell ; 186(22): 4956-4973.e21, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37852260

RESUMEN

The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.


Asunto(s)
Anafilatoxinas , Receptores de Complemento , Transducción de Señal , Anafilatoxinas/metabolismo , Complemento C3a/metabolismo , Inmunidad Innata , Receptores de Complemento/metabolismo , Humanos , Animales , Ratones
11.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37824211

RESUMEN

An immunosuppressive microenvironment causes poor tumor T cell infiltration and is associated with reduced patient overall survival in colorectal cancer. How to improve treatment responses in these tumors is still a challenge. Using an integrated screening approach to identify cancer-specific vulnerabilities, we identified complement receptor C5aR1 as a druggable target, which when inhibited improved radiotherapy, even in tumors displaying immunosuppressive features and poor CD8+ T cell infiltration. While C5aR1 is well-known for its role in the immune compartment, we found that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumor cell-specific functions. C5aR1 targeting resulted in increased NF-κB-dependent apoptosis specifically in tumors and not normal tissues, indicating that, in malignant cells, C5aR1 primarily regulated cell fate. Collectively, these data revealed that increased complement gene expression is part of the stress response mounted by irradiated tumors and that targeting C5aR1 could improve radiotherapy, even in tumors displaying immunosuppressive features.


Asunto(s)
Complemento C5a , Receptores de Complemento , Humanos , Complemento C5a/genética , Receptores de Complemento/genética
12.
Sci Transl Med ; 15(696): eadh0604, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37196062

RESUMEN

We have replicated our original finding of elevated cleaved caspase-1 in mouse brains and neuroprotection by an NLRP3 inflammasome inhibitor in two mouse models of Parkinson's disease.


Asunto(s)
Inflamasomas , Enfermedad de Parkinson , Ratones , Animales , alfa-Sinucleína , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad de Parkinson/patología , Dopamina
13.
NMR Biomed ; 36(10): e4964, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37122101

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease involving demyelination and axonal damage in the central nervous system (CNS). In this study, we investigated pathological changes in the lumbar spinal cord of C57BL/6 mice induced with progressive experimental autoimmune encephalomyelitis (EAE) disease using 9.4-T magnetic resonance imaging (MRI). Multiparametric MRI measurements including MR spectroscopy, diffusion tensor imaging (DTI) and volumetric analyses were applied to detect metabolic changes in the CNS of EAE mice. Compared with healthy mice, EAE mice showed a significant reduction in N-acetyl aspartate and increases in choline, glycine, taurine and lactate. DTI revealed a significant reduction in fractional anisotropy and axial diffusivity and an increase in radial diffusivity in the lumbar spinal cord white matter (WM), while in the grey matter (GM), fractional anisotropy increased. High-resolution structural imaging also revealed lumbar spinal cord WM hypertrophy and GM atrophy. Importantly, these MRI changes were strongly correlated with EAE disease scoring and pathological changes in the lumbar (L2-L6), particularly WM demyelination lesions and aggregation of immune cells (microglia/macrophages and astrocytes) in this region. This study identified changes in MRI biomarker signatures that can be useful for evaluating the efficacy of novel drugs using EAE models in vivo.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Imágenes de Resonancia Magnética Multiparamétrica , Esclerosis Múltiple , Ratones , Animales , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen de Difusión Tensora/métodos , Ratones Endogámicos C57BL , Médula Espinal/patología , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/patología , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética
14.
Immunity ; 56(5): 1098-1114.e10, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37003256

RESUMEN

Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.


Asunto(s)
Microbiota , Infecciones del Sistema Respiratorio , Animales , Femenino , Ratones , Embarazo , Células Dendríticas , Dieta , Propionatos
15.
Front Immunol ; 14: 1101387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081885

RESUMEN

Iron oxide nanoparticles (IONPs) are widely used in diagnostic and therapeutic settings. Upon systemic administration, however, they are rapidly recognized by components of innate immunity, which limit their therapeutic capacity and can potentially lead to adverse side effects. IONPs were previously found to induce the inflammatory response in human whole blood, including activation of the complement system and increased secretion of cytokines. Here, we investigated the thromboinflammatory response of 10-30 nm IONPs in lepirudin anticoagulated whole blood in interplay with endothelial cells and evaluated the therapeutic effect of applying complement inhibitors to limit adverse effects related to thromboinflammation. We found that IONPs induced complement activation, primarily at the C3-level, in whole blood incubated for up to four hours at 37°C with and without human microvascular endothelial cells. Furthermore, IONPs mediated a strong thromboinflammatory response, as seen by the significantly increased release of 21 of the 27 analyzed cytokines (p<0.05). IONPs also significantly increased cell-activation markers of endothelial cells [ICAM-1 (p<0.0001), P/E-selectin (p<0.05)], monocytes, and granulocytes [CD11b (p<0.001)], and platelets [CD62P (p<0.05), CD63 (p<0.05), NAP-2 (p<0.01), PF4 (p<0.05)], and showed cytotoxic effects, as seen by increased LDH (p<0.001) and heme (p<0.0001) levels. We found that inflammation and endothelial cell activation were partly complement-dependent and inhibition of complement at the level of C3 by compstatin Cp40 significantly attenuated expression of ICAM-1 (p<0.01) and selectins (p<0.05). We show that complement activation plays an important role in the IONPs-induced thromboinflammatory response and that complement inhibition is promising in improving IONPs biocompatibility.


Asunto(s)
Células Endoteliales , Trombosis , Humanos , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Inflamación/metabolismo , Trombosis/tratamiento farmacológico , Trombosis/metabolismo , Proteínas del Sistema Complemento/metabolismo , Citocinas/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro
16.
Front Immunol ; 14: 1086673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776827

RESUMEN

TLQP-21 is a 21-amino acid neuropeptide derived from the VGF precursor protein. TLQP-21 is expressed in the nervous system and neuroendocrine glands, and demonstrates pleiotropic roles including regulating metabolism, nociception and microglial functions. Several possible receptors for TLQP-21 have been identified, with complement C3a receptor (C3aR) being the most commonly reported. However, few studies have characterised the activity of TLQP-21 in immune cells, which represent the major cell type expressing C3aR. In this study, we therefore aimed to define the activity of both human and mouse TLQP-21 on cell signalling in primary human and mouse macrophages. We first confirmed that TLQP-21 induced ERK signalling in CHO cells overexpressing human C3aR, and did not activate human C5aR1 or C5aR2. TLQP-21 mediated ERK signalling was also observed in primary human macrophages. However, the potency for human TLQP-21 was 135,000-fold lower relative to C3a, and only reached 45% at the highest dose tested (10 µM). Unlike in humans, mouse TLQP-21 potently triggered ERK signalling in murine macrophages, reaching near full activation, but at ~10-fold reduced potency compared to C3a. We further confirmed the C3aR dependency of the TLQP-21 activities. Our results reveal significant discrepancy in TLQP-21 C3aR activity between human and murine receptors, with mouse TLQP-21 being consistently more potent than the human counterpart in both systems. Considering the supraphysiological concentrations of hTLQP-21 needed to only partially activate macrophages, it is likely that the actions of TLQP-21, at least in these immune cells, may not be mediated by C3aR in humans.


Asunto(s)
Macrófagos , Receptores de Complemento , Cricetinae , Humanos , Ratones , Animales , Cricetulus , Receptores de Complemento/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Receptor de Anafilatoxina C5a/metabolismo
17.
Cancer Res ; 83(8): 1315-1328, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36787115

RESUMEN

The inflammatory microenvironment of solid tumors creates a protumorigenic milieu that resembles chronic inflammation akin to a subverted wound healing response. Here, we investigated the effect of converting the tumor microenvironment from a chronically inflamed state to one of acute microbial inflammation by injecting microbial bioparticles directly into tumors. Intratumoral microbial bioparticle injection led to rapid and dramatic changes in the tumor immune composition, the most striking of which was a substantial increase in the presence of activated neutrophils. In situ photoconversion and intravital microscopy indicated that tumor neutrophils transiently switched from sessile producers of VEGF to highly motile neutrophils that clustered to make neutrophil-rich domains in the tumor. The neutrophil clusters remodeled tumor tissue and repressed tumor growth. Single-cell transcriptional analysis of microbe-stimulated neutrophils showed a profound shift in gene expression towards heightened activation and antimicrobial effector function. Microbe-activated neutrophils also upregulated chemokines known to regulate neutrophil and CD8+ T-cell recruitment. Microbial therapy also boosted CD8+ T-cell function and enhanced the therapeutic benefit of checkpoint inhibitor therapy in tumor-bearing mice and provided protection in a model of tumor recurrence. These data indicate that one of the major effector mechanisms of microbial therapy is the conversion of tumor neutrophils from a wound healing to an acutely activated cytotoxic phenotype, highlighting a rationale for broader deployment of microbial therapy in the treatment of solid cancers. SIGNIFICANCE: Intratumoral injection of microbial bioparticles stimulates neutrophil antitumor functions, suggesting pathways for optimizing efficacy of microbial therapies and paving the way for their broader utilization in the clinic.


Asunto(s)
Neoplasias , Neutrófilos , Ratones , Animales , Neutrófilos/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Linfocitos T CD8-positivos , Inflamación/patología , Fenotipo , Infiltración Neutrófila , Microambiente Tumoral
18.
J Cereb Blood Flow Metab ; 43(1): 26-43, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36281012

RESUMEN

Neurodegeneration refers to the selective and progressive loss-of-function and atrophy of neurons, and is present in disorders such as Alzheimer's, Huntington's, and Parkinson's disease. Although each disease presents with a unique pattern of neurodegeneration, and subsequent disease phenotype, increasing evidence implicates alterations in energy usage as a shared and core feature in the onset and progression of these disorders. Indeed, disturbances in energy metabolism may contribute to the vulnerability of neurons to apoptosis. In this review we will outline these disturbances in glucose metabolism, and how fatty acids are able to compensate for this impairment in energy production in neurodegenerative disorders. We will also highlight underlying mechanisms that could contribute to these alterations in energy metabolism. A greater understanding of these metabolism-neurodegeneration processes could lead to improved treatment options for neurodegenerative disease patients.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Glucosa
19.
Mol Psychiatry ; 28(7): 2878-2893, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36316366

RESUMEN

Coronavirus disease-2019 (COVID-19) is primarily a respiratory disease, however, an increasing number of reports indicate that SARS-CoV-2 infection can also cause severe neurological manifestations, including precipitating cases of probable Parkinson's disease. As microglial NLRP3 inflammasome activation is a major driver of neurodegeneration, here we interrogated whether SARS-CoV-2 can promote microglial NLRP3 inflammasome activation. Using SARS-CoV-2 infection of transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) as a COVID-19 pre-clinical model, we established the presence of virus in the brain together with microglial activation and NLRP3 inflammasome upregulation in comparison to uninfected mice. Next, utilising a model of human monocyte-derived microglia, we identified that SARS-CoV-2 isolates can bind and enter human microglia in the absence of viral replication. This interaction of virus and microglia directly induced robust inflammasome activation, even in the absence of another priming signal. Mechanistically, we demonstrated that purified SARS-CoV-2 spike glycoprotein activated the NLRP3 inflammasome in LPS-primed microglia, in a ACE2-dependent manner. Spike protein also could prime the inflammasome in microglia through NF-κB signalling, allowing for activation through either ATP, nigericin or α-synuclein. Notably, SARS-CoV-2 and spike protein-mediated microglial inflammasome activation was significantly enhanced in the presence of α-synuclein fibrils and was entirely ablated by NLRP3-inhibition. Finally, we demonstrate SARS-CoV-2 infected hACE2 mice treated orally post-infection with the NLRP3 inhibitory drug MCC950, have significantly reduced microglial inflammasome activation, and increased survival in comparison with untreated SARS-CoV-2 infected mice. These results support a possible mechanism of microglial innate immune activation by SARS-CoV-2, which could explain the increased vulnerability to developing neurological symptoms akin to Parkinson's disease in COVID-19 infected individuals, and a potential therapeutic avenue for intervention.


Asunto(s)
COVID-19 , Enfermedad de Parkinson , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microglía/metabolismo , alfa-Sinucleína/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/metabolismo , Ratones Transgénicos
20.
Sci Rep ; 12(1): 20278, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434087

RESUMEN

Despite increasing knowledge about the factors involved in the progression of diabetic complications, diabetic kidney disease (DKD) continues to be a major health burden. Current therapies only slow but do not prevent the progression of DKD. Thus, there is an urgent need to develop novel therapy to halt the progression of DKD and improve disease prognosis. In our preclinical study where we administered a histone deacetylase (HDAC) inhibitor, valproic acid, to streptozotocin-induced diabetic mice, albuminuria and glomerulosclerosis were attenuated. Furthermore, we discovered that valproic acid attenuated diabetes-induced upregulation of complement C5a receptors, with a concomitant reduction in markers of cellular senescence and senescence-associated secretory phenotype. Interestingly, further examination of mice lacking the C5a receptor 1 (C5aR1) gene revealed that cellular senescence was attenuated in diabetes. Similar results were observed in diabetic mice treated with a C5aR1 inhibitor, PMX53. RNA-sequencing analyses showed that PMX53 significantly regulated genes associated with cell cycle pathways leading to cellular senescence. Collectively, these results for the first time demonstrated that complement C5a mediates cellular senescence in diabetic kidney disease. Cellular senescence has been implicated in the pathogenesis of diabetic kidney disease, thus therapies to inhibit cellular senescence such as complement inhibitors present as a novel therapeutic option to treat diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/patología , Ácido Valproico/farmacología , Receptor de Anafilatoxina C5a/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Senescencia Celular , Complemento C5a , Inhibidores de Histona Desacetilasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...