Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Astrophys J ; 535(1): L55-L58, 2000 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-10829007

RESUMEN

We have phase-connected a sequence of Rossi X-Ray Timing Explorer Proportional Counter Array observations of SGR 1806-20 covering 178 days. We find that a simple secular spin-down model does not adequately fit the data. The period derivative varies gradually during the observations between 8.1x10-11 and 11.7x10-11 s s(-1) (at its highest, approximately 40% larger than the long-term trend), while the average burst rate as seen with the Burst and Transient Source Experiment drops throughout the time interval. The phase residuals give no compelling evidence for periodicity, but more closely resemble timing noise as seen in radio pulsars. The magnitude of the timing noise, however, is large relative to the noise level typically found in radio pulsars (Delta8=4.8; frequency derivative average power approximately 7x10-20 cycles(2) s(-3)). Combining these results with the noise levels measured for some anomalous X-ray pulsars, we find that all magnetar candidates have Delta(8) values larger than those expected from a simple extrapolation of the correlation found in radio pulsars. We find that the timing noise in SGR 1806-20 is greater than or equal to the levels found in some accreting systems (e.g., Vela X-1, 4U 1538-52, and 4U 1626-67), but the spin-down of SGR 1806-20 has thus far maintained coherence over 6 yr. Alternatively, an orbital model with a period Porb=733 days provides a statistically acceptable fit to the data. If the phase residuals are created by Doppler shifts from a gravitationally bound companion, then the allowed parameter space for the mass function (small) and orbital separation (large) rule out the possibility of accretion from the companion sufficient to power the persistent emission from the SGR.

2.
Astrophys J ; 532(2): L121-L124, 2000 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-10715239

RESUMEN

We present statistics of SGR 1806-20 bursts, combining 290 events detected with the Rossi X-Ray Timing Explorer/Proportional Counter Array, 111 events detected with the Burst and Transient Source Experiment, and 134 events detected with the International Cometary Explorer. We find that the fluence distribution of bursts observed with each instrument are well described by power laws with indices 1.43, 1.76, and 1.67, respectively. The distribution of time intervals between successive bursts from SGR 1806-20 is described by a lognormal function with a peak at 103 s. There is no correlation between the burst intensity and either the waiting times until the next burst or the time elapsed since the previous burst. In all these statistical properties, SGR 1806-20 bursts resemble a self-organized critical system, similar to earthquakes and solar flares. Our results thus support the hypothesis that the energy source for soft gamma repeater bursts is crustquakes due to the evolving, strong magnetic field of the neutron star, rather than any accretion or nuclear power.

3.
Astrophys J ; 527(1): L47-L50, 1999 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-10566996

RESUMEN

We present evidence for burst emission from SGR 1900+14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer ( approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of greater, similar1011 between these bursts from SGR 1900+14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.

4.
Astrophys J ; 526(2): L93-L96, 1999 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-10550286

RESUMEN

We study the statistics of soft gamma repeater (SGR) bursts using a database of 187 events detected with BATSE and 837 events detected with the Rossi X-Ray Timing Explorer Proportional Counter Array; all events are from SGR 1900+14 during its 1998-1999 active phase. We find that the fluence or energy distribution of bursts is consistent with a power law of index 1.66, over 4 orders of magnitude. This scale-free distribution resembles the Gutenberg-Richter law for earthquakes and gives evidence for self-organized criticality in SGRs. The distribution of time intervals between successive bursts from SGR 1900+14 is consistent with a lognormal distribution. There is no correlation between burst intensity and the waiting times till the next burst, but there is some evidence for a correlation between burst intensity and the time elapsed since the previous burst. We also find a correlation between the duration and the energy of the bursts, but with significant scatter. In all these statistical properties, SGR bursts resemble earthquakes and solar flares more closely than they resemble any known accretion-powered or nuclear-powered phenomena. Thus, our analysis lends support to the hypothesis that the energy source for SGR bursts is internal to the neutron star and plausibly magnetic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA