Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962962

RESUMEN

The synthesis and characterization of three new hybrid metal halide hydrates in which mer-[CrIIICl3(H2O)3]0 cocrystallizes alongside α-methylbenzylammonium chloride are described. The enantiomorphic crystals, ((R)-(+)-α-methylbenzylammonium)2(mer-[CrCl3(H2O)3])Cl2 ((R)-1) and ((S)-(-)-α-methylbenzylammonium)2(mer-[CrCl3(H2O)3])Cl2 ((S)-1), have C2221 space group symmetry and show mirrored circular dichroism signals. The racemate, (rac-α-methylbenzylammonium)2(mer-[CrCl3(H2O)3])Cl2 ((rac)-1), adopts a polar structure with Cm space group symmetry in which enantiomers are related by mirror planes within organic bilayers. Alongside detailed crystallography and magnetism of each compound, the optical properties of the mer-[CrIIICl3(H2O)3]0 unit are revisited. Understanding the intermolecular forces that stabilize each of these crystal structures lends insights into crystal engineering methodologies for stabilizing noncentrosymmetric hybrid metal halides.

3.
Nat Commun ; 15(1): 2429, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499529

RESUMEN

Polarons and spin-orbit (SO) coupling are distinct quantum effects that play a critical role in charge transport and spin-orbitronics. Polarons originate from strong electron-phonon interaction and are ubiquitous in polarizable materials featuring electron localization, in particular 3d transition metal oxides (TMOs). On the other hand, the relativistic coupling between the spin and orbital angular momentum is notable in lattices with heavy atoms and develops in 5d TMOs, where electrons are spatially delocalized. Here we combine ab initio calculations and magnetic measurements to show that these two seemingly mutually exclusive interactions are entangled in the electron-doped SO-coupled Mott insulator Ba2Na1-xCaxOsO6 (0 < x < 1), unveiling the formation of spin-orbital bipolarons. Polaron charge trapping, favoured by the Jahn-Teller lattice activity, converts the Os 5d1 spin-orbital Jeff = 3/2 levels, characteristic of the parent compound Ba2NaOsO6 (BNOO), into a bipolaron 5d2 Jeff = 2 manifold, leading to the coexistence of different J-effective states in a single-phase material. The gradual increase of bipolarons with increasing doping creates robust in-gap states that prevents the transition to a metal phase even at ultrahigh doping, thus preserving the Mott gap across the entire doping range from d1 BNOO to d2 Ba2CaOsO6 (BCOO).

4.
Sci Rep ; 14(1): 4198, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378717

RESUMEN

Structural domains and domain walls, inherent in single crystalline perovskite oxides, can significantly influence the properties of the material and therefore must be considered as a vital part of the design of the epitaxial oxide thin films. We employ 4D-STEM combined with machine learning (ML) to comprehensively characterize domain structures at both high spatial resolution and over a significant spatial extent. Using orthorhombic LaFeO3 as a model system, we explore the application of unsupervised and supervised ML in domain mapping, which demonstrates robustness against experiment uncertainties. The results reveal the consequential formation of multiple domains due to the structural degeneracy when LaFeO3 film is grown on cubic SrTiO3. In situ annealing of the film shows the mechanism of domain coarsening that potentially links to phase transition of LaFeO3 at high temperatures. Moreover, synthesis of LaFeO3 on DyScO3 illustrates that a less symmetric orthorhombic substrate inhibits the formation of domain walls, thereby contributing to the mitigation of structural degeneracy. High fidelity of our approach also highlights the potential for the domain mapping of other complicated materials and thin films.

5.
Inorg Chem ; 62(51): 21353-21363, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38059481

RESUMEN

The effect of nonstoichiometry on the cation distribution, crystal structure, and magnetic properties of a series of Cr-rich Sr2Cr1+xRe1-xO6 samples has been investigated. The double perovskite structure is maintained over a wide solid solution range that extends from x = 0 to approximately x = 0.5. For most of the solid solution range, the Cr-rich octahedral site maintains a nearly constant occupancy, 87% Cr and 13% Re, that is comparable to prior studies of Sr2CrReO6, while Cr steadily replaces Re on the other octahedral site. As x approaches 0.5, long-range Cr/Re ordering drops precipitously. Analysis of X-ray powder diffraction peak shapes reveals antiphase boundaries, associated with Cr/Re ordering, the concentration of which increases steadily with increasing x. Neutron powder diffraction studies confirm antiferromagnetic coupling between antisite Cr3+ ions and Cr3+ ions that occupy the normal sites, leading to site-dependent ferrimagnetic ordering. Density functional theory calculations indicate that chromium maintains a +3 oxidation state across the series, while the oxidation state of rhenium increases with increasing x. Calculations are also used to explore the energies of competing magnetic ground states. Except for the most chromium-rich compositions (x ≈ 0.5), site-dependent ferrimagnetism is retained with only a modest reduction in TC. The saturation magnetization steadily decreases as the chromium content increases due to a combination of Cr/Re antisite disorder and antiphase boundaries.

6.
IUCrJ ; 10(Pt 4): 385-396, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307102

RESUMEN

A symmetry mode analysis yields 47 symmetrically distinct patterns of octahedral tilting in hybrid organic-inorganic layered perovskites that adopt the n = 1 Ruddlesden-Popper (RP) structure. The crystal structures of compounds belonging to this family are compared with the predictions of the symmetry analysis. Approximately 88% of the 140 unique structures have symmetries that agree with those expected based on octahedral tilting alone, while the remaining compounds have additional structural features that further lower the symmetry, such as asymmetric packing of bulky organic cations, distortions of metal-centered octahedra or a shift of the inorganic layers that deviates from the a/2 + b/2 shift associated with the RP structure. The structures of real compounds are heterogeneously distributed amongst the various tilt systems, with only 9 of the 47 tilt systems represented. No examples of in-phase ψ-tilts about the a and/or b axes of the undistorted parent structure were found, while at the other extreme ∼66% of the known structures possess a combination of out-of-phase φ-tilts about the a and/or b axes and θ-tilts (rotations) about the c axis. The latter combination leads to favorable hydrogen bonding interactions that accommodate the chemically inequivalent halide ions within the inorganic layers. In some compounds, primarily those that contain either Pb2+ or Sn2+, favorable hydrogen bonding interactions can also be achieved by distortions of the octahedra in combination with θ-tilts.


Asunto(s)
Compuestos de Calcio , Gastrópodos , Animales , Óxidos , Vendajes , Fibras de la Dieta
7.
J Am Chem Soc ; 143(45): 19121-19127, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34730339

RESUMEN

Complex compositional and displacive modulations of the crystal structure of KLaMnWO6 are imaged with atomic resolution by means of scanning transmission electron microscopy (STEM). This oxide is stabilized by cation vacancies leading to a La1+x/3K1-xMnWO6 stoichiometry. Compositional modulation on both the K and La layers are revealed in the high-angle annular dark-field STEM (HAADF-STEM) images. The compositional modulation within the La layer is coupled with the modulation of the octahedral tilting, which is exposed by imaging of the anion sublattice in annular bright-field STEM (ABF-STEM) images. These complex modulations are accommodated in a 5√2ap × 5√2ap × 2ap perovskite-type structure.

8.
Inorg Chem ; 59(19): 14478-14485, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32960045

RESUMEN

Here, we present the synthesis and crystal structure of Rb3InCl6 prepared from air stable reagents via a two-step process that proceeds through the intermediate Rb2InCl5·H2O. Rb3InCl6 crystallizes with the Rb3YCl6 structure type (C2/c), which can be derived from the double perovskite structure by noncooperative tilting of isolated [InCl6]3- octahedra. Despite this lowering of symmetry, the optical properties are similar to the cubic double perovskite Cs2NaInCl6. Partial substitution of In3+ with Sb3+ in Rb3InCl6 results in intense cyan-green photoluminescence originating from localized 5s2 to 5s15p1 electronic transitions of [SbCl6]3- polyatomic anions. In comparison with the cubic double perovskite phosphor Cs2NaInCl6:Sb3+, the octahedral tilting distortion increases the electronic isolation of the In/Sb-centered octahedra thus facilitating electron and hole localization on Sb3+ sites, leading to bright photoluminescence. The distorted crystal structure also leads to a larger Stokes shift (1.29 eV) and a corresponding red shift of the emission peak (λmax = 522 nm) compared to the more symmetric Cs2NaInCl6:Sb3+ (Stokes shift ≈ 0.94 eV, λmax = 445 nm).

9.
Phys Rev Lett ; 124(25): 257202, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32639765

RESUMEN

Interfacial magnetic anisotropy in magnetic insulators has been largely unexplored. Recently, interface-induced skyrmions and electrical control of magnetization have been discovered in insulator-based heterostructures, which demand a thorough understanding of interfacial interactions in these materials. We observe a substantial, tunable interfacial magnetic anisotropy between Tm_{3}Fe_{5}O_{12} epitaxial thin films and fifteen nonmagnetic materials spanning a significant portion of the periodic table, which we attribute to Rashba spin-orbit coupling. Our results show a clear distinction between nonmagnetic capping layers from the d block and the p block. This work offers a new path for controlling magnetic phases in magnetic insulators for low-loss spintronic applications.

10.
Inorg Chem ; 59(9): 6010-6017, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32324394

RESUMEN

Herein we report the synthesis, structure, and band gaps of four layered halide double perovskites, i.e., BA2Cu0.5In0.5Cl4, BA2Ag0.5In0.5Cl4, BA2Ag0.5Sb0.5Cl4, and BA2Ag0.5Sb0.5Br4 [BA = butylammonium = CH3(CH2)3NH3+], each of which has the n = 1 Ruddlesden-Popper structure. In addition, the crystal structure of BA2Ag0.5Bi0.5Br4 is revisited and that of BA2PbCl4 is reported for the first time. Only BA2Ag0.5Sb0.5Cl4 has the tetragonal I4/mmm symmetry of the undistorted Ruddlesden-Popper structure. The other five compounds have orthorhombic structures due to tilts of the octahedra and orientational ordering of the butylammonium groups. As the lateral dimensions of the inorganic layer decrease, the c/a ratio increases due to decreased interdigitation of the alkyl ends of the butylammonium cations. This structural feature may help to explain the increased stability of the bromide phases with respect to the chloride phases. There are features in the diffraction patterns of BA2Ag0.5Bi0.5Br4 and BA2Cu0.5In0.5Cl4 that suggest ordering of octahedral cations within the layers, but in those compounds there appears to be a high concentration of stacking faults between layers that limits long-range, three-dimensional ordering of cations. In the other cases the scattering powers of the cations (Ag/Sb and Ag/In) are too similar to say anything definitive about cation ordering. The band gaps of these compounds range from 2.65 to 4.27 eV, with the bromide compositions possessing smaller band gaps than the chlorides. The band gaps of layered BA2M0.5M'0.5X4 compositions studied here are roughly 0.5-0.8 eV larger than analogous Cs2MM'X6 cubic double perovskites due to a combination of dimensional reduction (3D → 2D), distortions of the octahedral environment around the M/M' ions, and octahedral tilting distortions.

11.
J Phys Chem C Nanomater Interfaces ; 124(30): 16577-16585, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-33643515

RESUMEN

We present a combined experimental and computational study of the effect of charge doping in the osmium based double perovskite Ba2Na1-x Ca x OsO6 for 0 ≤ x ≤ 1 in order to provide a structural and electronic basis for understanding this complex Dirac-Mott insulator material. Specifically, we investigate the effects of the substitution of monovalent Na with divalent Ca, a form of charge doping or alloying that nominally tunes the system from Os7+ with a 5d1 configuration to Os6+ with 5d2 configuration. After an X-ray diffraction characterization, the local atomic and electronic structure has been experimentally probed by X-ray absorption fine structure at all the cation absorption edges at room temperature; the simulations have been performed using ab initio density functional methods. We find that the substitution of Na by Ca induces a linear volume expansion of the crystal structure which indicates an effective alloying due to the substitution process in the whole doping range. The local structure corresponds to the expected double perovskite one with rock-salt arrangement of Na/Ca in the B site and Os in the B' one for all the compositions. X-ray absorption near edge structure measurements show a smooth decrease of the oxidation state of Os from 7+ (5d1) to 6+ (5d2) with increasing Ca concentration, while the oxidation states of Ba, Na, and Ca are constant. This indicates that the substitution of Na by Ca gives rise to an effective electron transfer from the B to the B' site. The comparison between X-ray absorption measurements and ab initio simulations reveals that the expansion of the Os-O bond length induces a reduction of the crystal field splitting of unoccupied Os derived d states.

12.
Inorg Chem ; 58(19): 13403-13410, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31549818

RESUMEN

The photoluminescent properties of the lead-free double perovskite solid solution Cs2AgIn1-xBixCl6 have been investigated. The In3+ end member, Cs2AgInCl6, is a direct gap semiconductor that absorbs UV light (λ < 350 nm) and shows little to no photoluminescence. Incorporation of Bi3+ leads to a strong sub-band gap absorption that peaks in the near UV (∼360 nm) and extends into the visible. This absorption, which is thought to originate from localized 6s2 → 6s1p1 transitions on Bi3+ ions, is split by a Jahn-Teller distortion of the excited state. In-rich samples show strong photoluminescence that is attributed to radiative decay of self-trapped excitons, with a broad emission peak of significant intensity from 450 to 750 nm. The color of the emitted light is best described as yellow-white (λmax ≈ 625 nm), due to the extreme breadth of the emission peak (fwhm ≈ 217(2) nm). The excitation spectrum extends out to 450 nm for samples near x = 0.25, while the photoluminescent quantum yield (PLQY) reaches a maximum of 39 ± 3% in the x = 0.167 sample. The emission characteristics, which include a correlated color temperature (CCT) of 3119 K and a color rendering index (CRI) of 85, coupled with an excitation spectrum that can be driven by visible photons emitted from a Ga1-xInxN LED, make Cs2AgIn1-xBixCl6 phosphors promising for use in solid state white lighting applications.

13.
Inorg Chem ; 58(5): 3227-3236, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30762343

RESUMEN

A Zr metal-organic framework (MOF) 1-CoCl3 has been synthesized by solvothermal reaction of ZrCl4 with a carboxylic acid-functionalized CoIII-PNNNP pincer complex H4(L-CoCl3) ([L-CoCl3]4- = [(2,6-(NHPAr2)2C6H3)CoCl3]4-, Ar = p-C6H4CO2-). The structure of 1-CoCl3 has been determined by X-ray powder diffraction and exhibits a csq topology that differs from previously reported ftw-net Zr MOFs assembled from related PdII- and PtII-PNNNP pincer complexes. The Co-PNNNP pincer species readily demetallate upon reduction of CoIII to CoII, allowing for transmetalation with late second and third row transition metals in both the homogeneous complex and 1-CoCl3. Reaction of 1-CoCl3 with [Rh(nbd)Cl]2 (nbd = 2,5-nobornadiene) results in complete Rh/Co metal exchange at the supported diphosphine pincer complexes to generate 1-RhCl, which has been inaccessible by direct solvothermal synthesis. Treating 1-CoCl3 with PtCl2(SMe2)2 in the presence of the mild reductant NEt3 resulted in nearly complete Co substitution by Pt. In addition, a mixed metal pincer MOF, 1-PtRh, was generated by sequential substitution of Co with Pt followed by Rh.

14.
Acta Crystallogr A Found Adv ; 74(Pt 4): 291-292, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29978840
15.
Inorg Chem ; 57(6): 2989-3001, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29473747

RESUMEN

Six La ABB'O6 ( A = Ca, Sr; B = Co, Ni; B' = Ru, Os) double perovskites were synthesized, several for the first time, and their crystal structures and magnetic behavior were characterized with neutron powder diffraction and direct-current and alternating-current magnetometry. All six compounds crystallize with P21 /n space group symmetry, resulting from a- a- c+ octahedral tilting and complete rock salt ordering of transition-metal ions. Despite the electronic configurations of the transition-metal ions, either d8-d3 or d7-d3, not one of the six compounds shows ferromagnetism as predicted by the Goodenough-Kanamori rules. LaSrNiOsO6, LaSrNiRuO6, and LaCaNiRuO6 display long-range antiferromagnetic order, while LaCaNiOsO6, LaCaCoOsO6, and LaSrCoOsO6 exhibit spin-glass behavior. These compounds are compared to the previously studied LaCaCoRuO6 and LaSrCoRuO6, both of which order antiferromagnetically. The observed variations in magnetic properties can be attributed largely to the response of competing superexchange pathways due to changes in B-O- B' bond angles, differences in the radial extent of the 4d ( B' = Ru) and 5d ( B' = Os) orbitals, and filling of the t2g orbitals of the 3d ion.

16.
Inorg Chem ; 55(23): 12383-12390, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27934405

RESUMEN

Three doubly ordered double perovskites NaREMgWO6 (RE = La, Gd, Y) have been synthesized via traditional solid-state methods, doped with Eu3+, and characterized to evaluate their promise as Eu3+ phosphor hosts. NaYMgWO6, a new member of the family, was found to crystallize in the P21 space group and is isostructural with NaGdMgWO6. Emissions characteristic of Eu3+ ions (5D0 → 7F4,3,2,1,0) were observed, with the most intense transition being the 5D0 → 7F2 transition near 615 nm. Substitution of Eu3+ onto a more compressed RE site in the NaY1-xEuxMgWO6 and NaGd1-xEuxMgWO6 hosts results in a blue shift of the charge-transfer excitation band and an increase in the intensity of the 5D0 → 7F2 transition compared to NaLa1-xEuxMgWO6. All of the hosts can incorporate high concentrations of Eu3+ before concentration quenching is observed. When the rare-earth ion is either Gd3+ or Y3+, good energetic overlap between the Eu3+ charge-transfer band and the absorption of the host lattice results in sensitization and energy transfer from the perovskite host lattice to the Eu3+ activator sites. These hosts display comparable if not better luminescence than Y2O3:Eu3+, a commonly used commercial standard, demonstrating their promise as red phosphors.

17.
Sci Rep ; 6: 32462, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27571715

RESUMEN

The influence of spin-orbit coupling (SOC) on the physical properties of the 5d(2) system Sr2MgOsO6 is probed via a combination of magnetometry, specific heat measurements, elastic and inelastic neutron scattering, and density functional theory calculations. Although a significant degree of frustration is expected, we find that Sr2MgOsO6 orders in a type I antiferromagnetic structure at the remarkably high temperature of 108 K. The measurements presented allow for the first accurate quantification of the size of the magnetic moment in a 5d(2) system of 0.60(2) µB -a significantly reduced moment from the expected value for such a system. Furthermore, significant anisotropy is identified via a spin excitation gap, and we confirm by first principles calculations that SOC not only provides the magnetocrystalline anisotropy, but also plays a crucial role in determining both the ground state magnetic order and the size of the local moment in this compound. Through comparison to Sr2ScOsO6, it is demonstrated that SOC-induced anisotropy has the ability to relieve frustration in 5d(2) systems relative to their 5d(3) counterparts, providing an explanation of the high TN found in Sr2MgOsO6.

18.
Dalton Trans ; 45(22): 9174-81, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27169624

RESUMEN

Similarity between the Ga(+) ion and the Fe(3+) ion allows for partial replacement of Fe(3+) ions with Ga(3+) ions in the Fe(iii) crystallographic positions in Prussian blue (PB) to form various solid solutions KGaxFe1-x[Fe(CN)6] (0 < x < 1). Such solid solutions possess very high thermodynamic stability as expected from the parent PB structure. Consequently, a simple one-step (68)Ga-labeling method was developed for preparing a single-phase nanoparticulate bimodal PET/MRI imaging agent based on the PB structural platform. Unlike the typical (68)Ga-labelling reaction based on metal complexation, this novel chelator-free (68)Ga-labeling reaction was shown to be kinetically fast under the acidic conditions. The Ga(3+) ion does not hydrolyze, and affords the (68)Ga-labelled PB nanoparticles, which are easy to purify and have extremely high stability against radionuclidic leaching in aqueous solution.

19.
Inorg Chem ; 55(12): 5772-9, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27227553

RESUMEN

Combined synchrotron and neutron powder diffraction indicates that A3V4(PO4)6 (A = Mg, Mn, Fe, Co, Ni) compounds crystallize with triclinic P1̅ symmetry. Lattice parameters expand as expected with successive increases in the ionic radius of the A(2+) ion. Cation disorder on the octahedral sites increases as the ionic radii of A(2+) ion decreases. Direct-current magnetic susceptibility measurements indicate that all compounds with magnetic A(2+) ions order anti-ferromagnetically with transition temperatures ranging from 12 to 15 K. Effective magnetic moments for A3V4(PO4)6 (A = Mg, Mn, Fe, Co, Ni) are 5.16, 11.04, 10.08, 9.76, and 7.96 µB per formula unit, respectively, in line with calculated values for high-spin transition metal ions. With the exception of Co3V4(PO4)6 the ultraviolet-visible spectra are dominated by d-d transitions of the V(3+) ions. The striking emerald green color of Co3V4(PO4)6 arises from the combined effects of d-d transitions involving both V(3+) and Co(2+).

20.
Inorg Chem ; 53(19): 10570-7, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25208245

RESUMEN

Colorless single crystals of LiSb(OH)6, SrSn(OH)6, and BaSn(OH)6, which are useful as precursors for the synthesis of LiSbO3, SrSnO3, and BaSnO3, were synthesized by a low-temperature hydrothermal method using a Teflon-lined autoclave at 380 K. The crystal structures were determined by single-crystal X-ray diffraction measurements. LiSb(OH)6 crystallizes in the trigonal space group P3̅1m with a = 5.3812(3)A, c = 9.8195(7)A, V = 246.25(3)A(3), Z = 2. In this layered structure, [Li2Sb(OH)6](+) and [Sb(OH)6](-) layers are alternately stacked along the c-direction. The [Li2Sb(OH)6](+) layer can be regarded as a cation-ordered CdCl2 layer. The [Sb(OH)6)](-) layer is built up from isolated [Sb(OH)6](-) octahedra, which are linked to each other via hydrogen bonding within the layer. BaSn(OH)6 and SrSn(OH)6 crystallize with monoclinic P21/n space group symmetry. The monoclinic structure possesses a CsCl-type packing of Ba(2+)/Sr(2+) cations and [Sn(OH)6](2-) anions. The [Sn(OH)6](2-) polyhedra are connected to each other through hydrogen bonding to form a three-dimensional framework. The factors that favor these hitherto unknown crystal structures are discussed using a structure map that compares various M(OH)3 and M'M″(OH)6 compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...