Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Exp Neurol ; : 114811, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723859

RESUMEN

Small fiber neuropathy (SFN) is a common and debilitating disease in which the terminals of small diameter sensory axons degenerate, producing sensory loss, and in many patients neuropathic pain. While a substantial number of cases are attributable to diabetes, almost 50% are idiopathic. An underappreciated aspect of the disease is its late onset in most patients. Animal models of human genetic mutations that produce SFN also display age-dependent phenotypes suggesting that aging is an important contributor to the risk of development of the disease. In this review we define how particular sensory neurons are affected in SFN and discuss how aging may drive the disease. We also evaluate how animal models of SFN can define disease mechanisms that will provide insight into early risk detection and suggest novel therapeutic interventions.

2.
J Exp Med ; 221(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38607420

RESUMEN

Physiological pain serves as a warning of exposure to danger and prompts us to withdraw from noxious stimuli to prevent tissue damage. Pain can also alert us of an infection or organ dysfunction and aids in locating such malfunction. However, there are instances where pain is purely pathological, such as unresolved pain following an inflammation or injury to the nervous system, and this can be debilitating and persistent. We now appreciate that immune cells are integral to both physiological and pathological pain, and that pain, in consequence, is not strictly a neuronal phenomenon. Here, we discuss recent findings on how immune cells in the skin, nerve, dorsal root ganglia, and spinal cord interact with somatosensory neurons to mediate pain. We also discuss how both innate and adaptive immune cells, by releasing various ligands and mediators, contribute to the initiation, modulation, persistence, or resolution of various modalities of pain. Finally, we propose that the neuroimmune axis is an attractive target for pain treatment, but the challenges in objectively quantifying pain preclinically, variable sex differences in pain presentation, as well as adverse outcomes associated with immune system modulation, all need to be considered in the development of immunotherapies against pain.


Asunto(s)
Neuronas , Dolor , Femenino , Masculino , Humanos , Cognición , Ganglios Espinales , Inmunoterapia
3.
Sci Transl Med ; 16(743): eadg3036, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630850

RESUMEN

Spontaneous pain, a major complaint of patients with neuropathic pain, has eluded study because there is no reliable marker in either preclinical models or clinical studies. Here, we performed a comprehensive electroencephalogram/electromyogram analysis of sleep in several mouse models of chronic pain: neuropathic (spared nerve injury and chronic constriction injury), inflammatory (Freund's complete adjuvant and carrageenan, plantar incision) and chemical pain (capsaicin). We find that peripheral axonal injury drives fragmentation of sleep by increasing brief arousals from non-rapid eye movement sleep (NREMS) without changing total sleep amount. In contrast to neuropathic pain, inflammatory or chemical pain did not increase brief arousals. NREMS fragmentation was reduced by the analgesics gabapentin and carbamazepine, and it resolved when pain sensitivity returned to normal in a transient neuropathic pain model (sciatic nerve crush). Genetic silencing of peripheral sensory neurons or ablation of CGRP+ neurons in the parabrachial nucleus prevented sleep fragmentation, whereas pharmacological blockade of skin sensory fibers was ineffective, indicating that the neural activity driving the arousals originates ectopically in primary nociceptor neurons and is relayed through the lateral parabrachial nucleus. These findings identify NREMS fragmentation by brief arousals as an effective proxy to measure spontaneous neuropathic pain in mice.


Asunto(s)
Neuralgia , Nociceptores , Humanos , Ratas , Ratones , Animales , Movimientos Oculares , Hiperalgesia/complicaciones , Ratas Sprague-Dawley , Sueño , Modelos Animales de Enfermedad
4.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645252

RESUMEN

Pain hypersensitivity arises from the plasticity of peripheral and spinal somatosensory neurons, which modifies nociceptive input to the brain and alters pain perception. We utilized chronic calcium imaging of spinal dorsal horn neurons to determine how the representation of somatosensory stimuli in the anterolateral tract, the principal pathway transmitting nociceptive signals to the brain, changes between distinct pain states. In healthy conditions, we identify stable, narrowly tuned outputs selective for cooling or warming, and a neuronal ensemble activated by intense/noxious thermal and mechanical stimuli. Induction of an acute peripheral sensitization with capsaicin selectively and transiently retunes nociceptive output neurons to encode low-intensity stimuli. In contrast, peripheral nerve injury-induced neuropathic pain results in a persistent suppression of innocuous spinal outputs coupled with activation of a normally silent population of high-threshold neurons. These results demonstrate the differential modulation of specific spinal outputs to the brain during nociceptive and neuropathic pain states.

5.
Nat Commun ; 15(1): 1289, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346995

RESUMEN

The cerebral cortex is vital for the processing and perception of sensory stimuli. In the somatosensory axis, information is received primarily by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted perception. This suggests that responsiveness to particular somatosensory stimuli occurs in a modality specific fashion and we sought to determine additional cortical substrates. In this work, we identify in a mouse model that inhibition of S2 output increases mechanical and heat, but not cooling sensitivity, in contrast to S1. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and heat sensitivity without affecting motor performance or anxiety. Taken together, we show that S2 is an essential cortical structure that governs mechanical and heat sensitivity.


Asunto(s)
Calor , Corteza Somatosensorial , Ratones , Animales , Corteza Somatosensorial/fisiología , Corteza Cerebral
6.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352324

RESUMEN

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, causing sensory loss and debilitating neuropathic pain 1,2 . Although the onset and progression of DPN have been linked with dyslipidemia and hyperglycemia 3 , the contribution of inflammation in the pathogenesis of DPN has not been investigated. Here, we use a High Fat High Fructose Diet (HFHFD) to model DPN and the diabetic metabolic syndrome in mice. Diabetic mice develop persistent heat hypoalgesia after three months, but a reduction in epidermal skin innervation only manifests at 6 months. Using single-cell sequencing, we find that CCR2+ macrophages infiltrate the sciatic nerves of diabetic mice well before axonal degeneration is detectable. We show that these infiltrating macrophages share gene expression similarities with nerve crush-induced macrophages 4 and express neurodegeneration-associated microglia marker genes 5 although there is no axon loss or demyelination. Inhibiting this macrophage recruitment in diabetic mice by genetically or pharmacologically blocking CCR2 signaling results in a more severe heat hypoalgesia and accelerated skin denervation. These findings reveal a novel neuroprotective recruitment of macrophages into peripheral nerves of diabetic mice that delays the onset of terminal axonal degeneration, thereby reducing sensory loss. Potentiating and sustaining this early neuroprotective immune response in patients represents, therefore, a potential means to reduce or prevent DPN.

7.
Cell Rep ; 43(2): 113718, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38294904

RESUMEN

How mechanical allodynia following nerve injury is encoded in patterns of neural activity in the spinal cord dorsal horn (DH) remains incompletely understood. We address this in mice using the spared nerve injury model of neuropathic pain and in vivo electrophysiological recordings. Surprisingly, despite dramatic behavioral over-reactivity to mechanical stimuli following nerve injury, an overall increase in sensitivity or reactivity of DH neurons is not observed. We do, however, observe a marked decrease in correlated neural firing patterns, including the synchrony of mechanical stimulus-evoked firing, across the DH. Alterations in DH temporal firing patterns are recapitulated by silencing DH parvalbumin+ (PV+) interneurons, previously implicated in mechanical allodynia, as are allodynic pain-like behaviors. These findings reveal decorrelated DH network activity, driven by alterations in PV+ interneurons, as a prominent feature of neuropathic pain and suggest restoration of proper temporal activity as a potential therapeutic strategy to treat chronic neuropathic pain.


Asunto(s)
Neuralgia , Percepción del Tiempo , Animales , Ratones , Hiperalgesia , Asta Dorsal de la Médula Espinal , Células del Asta Posterior , Interneuronas , Médula Espinal
8.
Pain ; 165(3): 550-564, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37851396

RESUMEN

ABSTRACT: Neuromas are a substantial cause of morbidity and reduction in quality of life. This is not only caused by a disruption in motor and sensory function from the underlying nerve injury but also by the debilitating effects of neuropathic pain resulting from symptomatic neuromas. A wide range of surgical and therapeutic modalities have been introduced to mitigate this pain. Nevertheless, no single treatment option has been successful in completely resolving the associated constellation of symptoms. While certain novel surgical techniques have shown promising results in reducing neuroma-derived and phantom limb pain, their effectiveness and the exact mechanism behind their pain-relieving capacities have not yet been defined. Furthermore, surgery has inherent risks, may not be suitable for many patients, and may yet still fail to relieve pain. Therefore, there remains a great clinical need for additional therapeutic modalities to further improve treatment for patients with devastating injuries that lead to symptomatic neuromas. However, the molecular mechanisms and genetic contributions behind the regulatory programs that drive neuroma formation-as well as the resulting neuropathic pain-remain incompletely understood. Here, we review the histopathological features of symptomatic neuromas, our current understanding of the mechanisms that favor neuroma formation, and the putative contributory signals and regulatory programs that facilitate somatic pain, including neurotrophic factors, neuroinflammatory peptides, cytokines, along with transient receptor potential, and ionotropic channels that suggest possible approaches and innovations to identify novel clinical therapeutics.


Asunto(s)
Neuralgia , Neuroma , Miembro Fantasma , Humanos , Calidad de Vida , Neuroma/etiología , Neuralgia/etiología , Biología
9.
Commun Biol ; 6(1): 1228, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052846

RESUMEN

TRPV1 is an ion channel that transduces noxious heat and chemical stimuli and is expressed in small fiber primary sensory neurons that represent almost half of skin nerve terminals. Tissue injury and inflammation result in the sensitization of TRPV1 and sustained activation of TRPV1 can lead to cellular toxicity though calcium influx. To identify signals that trigger TRPV1 sensitization after a 24-h exposure, we developed a phenotypic assay in mouse primary sensory neurons and performed an unbiased screen with a compound library of 480 diverse bioactive compounds. Chemotherapeutic agents, calcium ion deregulators and protein synthesis inhibitors were long-acting TRPV1 sensitizers. Amongst the strongest TRPV1 sensitizers were proteasome inhibitors, a class that includes bortezomib, a chemotherapeutic agent that causes small fiber neuropathy in 30-50% of patients. Prolonged exposure of bortezomib produced a TRPV1 sensitization that lasted several days and neurite retraction in vitro and histological and behavioral changes in male mice in vivo. TRPV1 knockout mice were protected from epidermal nerve fiber loss and a loss of sensory discrimination after bortezomib treatment. We conclude that long-term TRPV1 sensitization contributes to the development of bortezomib-induced neuropathy and the consequent loss of sensation, major deficits experienced by patients under this chemotherapeutic agent.


Asunto(s)
Calcio , Canales Catiónicos TRPV , Humanos , Ratones , Masculino , Animales , Bortezomib/efectos adversos , Bortezomib/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Calcio/metabolismo , Piel/metabolismo , Ratones Noqueados
10.
Nat Commun ; 14(1): 5632, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704594

RESUMEN

With concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pain, analgesia and addiction across species are limited. To address this, we developed a catalog of MOR promoter (MORp) based constructs packaged into adeno-associated viral vectors that drive transgene expression in MOR+ cells. MORp constructs designed from promoter regions upstream of the mouse Oprm1 gene (mMORp) were validated for transduction efficiency and selectivity in endogenous MOR+ neurons in the brain, spinal cord, and periphery of mice, with additional studies revealing robust expression in rats, shrews, and human induced pluripotent stem cell (iPSC)-derived nociceptors. The use of mMORp for in vivo fiber photometry, behavioral chemogenetics, and intersectional genetic strategies is also demonstrated. Lastly, a human designed MORp (hMORp) efficiently transduced macaque cortical OPRM1+ cells. Together, our MORp toolkit provides researchers cell type specific genetic access to target and functionally manipulate mu-opioidergic neurons across a range of vertebrate species and translational models for pain, addiction, and neuropsychiatric disorders.


Asunto(s)
Analgesia , Dolor Crónico , Células Madre Pluripotentes Inducidas , Animales , Humanos , Ratones , Ratas , Macaca , Receptores Opioides , Receptores Opioides mu/genética , Transgenes
11.
Sci Transl Med ; 15(708): eadg6241, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556559

RESUMEN

Oncomodulin (Ocm) is a myeloid cell-derived growth factor that enables axon regeneration in mice and rats after optic nerve injury or peripheral nerve injury, yet the mechanisms underlying its activity are unknown. Using proximity biotinylation, coimmunoprecipitation, surface plasmon resonance, and ectopic expression, we have identified armadillo-repeat protein C10 (ArmC10) as a high-affinity receptor for Ocm. ArmC10 deletion suppressed inflammation-induced axon regeneration in the injured optic nerves of mice. ArmC10 deletion also suppressed the ability of lesioned sensory neurons to regenerate peripheral axons rapidly after a second injury and to regenerate their central axons after spinal cord injury in mice (the conditioning lesion effect). Conversely, Ocm acted through ArmC10 to accelerate optic nerve and peripheral nerve regeneration and to enable spinal cord axon regeneration in these mouse nerve injury models. We showed that ArmC10 is highly expressed in human-induced pluripotent stem cell-derived sensory neurons and that exposure to Ocm altered gene expression and enhanced neurite outgrowth. ArmC10 was also expressed in human monocytes, and Ocm increased the expression of immune modulatory genes in these cells. These findings suggest that Ocm acting through its receptor ArmC10 may be a useful therapeutic target for nerve repair and immune modulation.


Asunto(s)
Axones , Células Madre Pluripotentes Inducidas , Animales , Humanos , Ratones , Ganglios Espinales/metabolismo , Regeneración Nerviosa , Proyección Neuronal , Células Receptoras Sensoriales
12.
Res Sq ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37461707

RESUMEN

The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.

13.
bioRxiv ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37461736

RESUMEN

Peripheral sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli including touch, temperature, and pain to the central nervous system. Recent advances in single-cell RNA-sequencing (scRNA-seq) have provided new insights into the diversity of sensory ganglia cell types in rodents, non-human primates, and humans, but it remains difficult to compare transcriptomically defined cell types across studies and species. Here, we built cross-species harmonized atlases of DRG and TG cell types that describe 18 neuronal and 11 non-neuronal cell types across 6 species and 19 studies. We then demonstrate the utility of this harmonized reference atlas by using it to annotate newly profiled DRG nuclei/cells from both human and the highly regenerative axolotl. We observe that the transcriptomic profiles of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The new resources and data presented here can guide future studies in comparative transcriptomics, simplify cell type nomenclature differences across studies, and help prioritize targets for future pain therapy development.

14.
bioRxiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37293011

RESUMEN

The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.

15.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37293068

RESUMEN

Postoperative pain affects most patients after major surgery and can transition to chronic pain. Here, we discovered that postoperative pain hypersensitivity correlated with markedly increased local levels of the metabolite BH4. Gene transcription and reporter mouse analyses after skin injury identified neutrophils, macrophages and mast cells as primary postoperative sources of GTP cyclohydrolase-1 (Gch1) expression, the rate-limiting enzyme in BH4 production. While specific Gch1 deficiency in neutrophils or macrophages had no effect, mice deficient in mast cells or mast cell-specific Gch1 showed drastically decreased postoperative pain after surgery. Skin injury induced the nociceptive neuropeptide substance P, which directly triggers the release of BH4-dependent serotonin in mouse and human mast cells. Substance P receptor blockade substantially ameliorated postoperative pain. Our findings underline the unique position of mast cells at the neuro-immune interface and highlight substance P-driven mast cell BH4 production as promising therapeutic targets for the treatment of postoperative pain.

16.
J Neurosci ; 43(26): 4775-4794, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37277179

RESUMEN

The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However, extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of α9 integrin and its activator kindlin-1 (α9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of adult male rat DRG sensory neurons transduced with α9k1, and controls, with and without axotomy of the central branch. Expression of α9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling α9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration. In addition to the program upregulated by α9k1 expression, regeneration in the spinal cord led to expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum (ER), trafficking, and signaling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPSC-derived sensory neurons, validating their causal contributions to sensory regeneration. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, and Yy1. Signaling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with an additional distinctive program that differs from that involved in PNS regeneration.SIGNIFICANCE STATEMENT Restoration of neurologic function after spinal cord injury has yet to be achieved in human patients. To accomplish this, severed nerve fibers must be made to regenerate. Reconstruction of nerve pathways has not been possible, but recently, a method for stimulating long-distance axon regeneration of sensory fibers in rodents has been developed. This research uses profiling of messenger RNAs in the regenerating sensory neurons to discover which mechanisms are activated. This study shows that the regenerating neurons initiate a novel CNS regeneration program which includes molecular transport, autophagy, ubiquitination, and modulation of the endoplasmic reticulum (ER). The study identifies mechanisms that neurons need to activate to regenerate their nerve fibers.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Ratas , Humanos , Masculino , Animales , Axones/fisiología , Integrinas/metabolismo , Regeneración Nerviosa/fisiología , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Ganglios Espinales/metabolismo , Células Receptoras Sensoriales/fisiología
17.
Cells ; 12(8)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37190098

RESUMEN

Inflammation and mitochondrial-dependent oxidative stress are interrelated processes implicated in multiple neuroinflammatory disorders, including Alzheimer's disease (AD) and depression. Exposure to elevated temperature (hyperthermia) is proposed as a non-pharmacological, anti-inflammatory treatment for these disorders; however, the underlying mechanisms are not fully understood. Here we asked if the inflammasome, a protein complex essential for orchestrating the inflammatory response and linked to mitochondrial stress, might be modulated by elevated temperatures. To test this, in preliminary studies, immortalized bone-marrow-derived murine macrophages (iBMM) were primed with inflammatory stimuli, exposed to a range of temperatures (37-41.5 °C), and examined for markers of inflammasome and mitochondrial activity. We found that exposure to mild heat stress (39 °C for 15 min) rapidly inhibited iBMM inflammasome activity. Furthermore, heat exposure led to decreased ASC speck formation and increased numbers of polarized mitochondria. These results suggest that mild hyperthermia inhibits inflammasome activity in the iBMM, limiting potentially harmful inflammation and mitigating mitochondrial stress. Our findings suggest an additional potential mechanism by which hyperthermia may exert its beneficial effects on inflammatory diseases.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Respuesta al Choque Térmico
18.
Bio Protoc ; 13(9): e4666, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37188109

RESUMEN

Management of neuropathic pain is notoriously difficult; current analgesics, including anti-inflammatory- and opioid-based medications, are generally ineffective and can pose serious side effects. There is a need to uncover non-addictive and safe analgesics to combat neuropathic pain. Here, we describe the setup of a phenotypic screen whereby the expression of an algesic gene,Gch1, is targeted. GCH1 is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4), a metabolite linked to neuropathic pain in both animal models and in human chronic pain sufferers.Gch1is induced in sensory neurons after nerve injury and its upregulation is responsible for increased BH4 levels. GCH1 protein has proven to be a difficult enzyme to pharmacologically target with small molecule inhibition. Thus, by establishing a platform to monitor and target inducedGch1 expression in individual injured dorsal root ganglion (DRG) neurons in vitro, we can screen for compounds that regulate its expression levels. This approach also allows us to gain valuable biological insights into the pathways and signals regulating GCH1 and BH4 levels upon nerve injury. This protocol is compatible with any transgenic reporter system in which the expression of an algesic gene (or multiple genes) can be monitored fluorescently. Such an approach can be scaled up for high-throughput compound screening and is amenable to transgenic mice as well as human stem cell-derived sensory neurons. Graphical overview.

19.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214873

RESUMEN

Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.

20.
Stem Cell Reports ; 18(4): 1030-1047, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37044067

RESUMEN

Development of new non-addictive analgesics requires advanced strategies to differentiate human pluripotent stem cells (hPSCs) into relevant cell types. Following principles of developmental biology and translational applicability, here we developed an efficient stepwise differentiation method for peptidergic and non-peptidergic nociceptors. By modulating specific cell signaling pathways, hPSCs were first converted into SOX10+ neural crest, followed by differentiation into sensory neurons. Detailed characterization, including ultrastructural analysis, confirmed that the hPSC-derived nociceptors displayed cellular and molecular features comparable to native dorsal root ganglion (DRG) neurons, and expressed high-threshold primary sensory neuron markers, transcription factors, neuropeptides, and over 150 ion channels and receptors relevant for pain research and axonal growth/regeneration studies (e.g., TRPV1, NAV1.7, NAV1.8, TAC1, CALCA, GAP43, DPYSL2, NMNAT2). Moreover, after confirming robust functional activities and differential response to noxious stimuli and specific drugs, a robotic cell culture system was employed to produce large quantities of human sensory neurons, which can be used to develop nociceptor-selective analgesics.


Asunto(s)
Neuronas , Células Madre Pluripotentes , Humanos , Neuronas/metabolismo , Nociceptores , Diferenciación Celular , Transducción de Señal , Ganglios Espinales/metabolismo , Células Receptoras Sensoriales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...